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For the binary MAP demodulator, we know that
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If we choose the front-end filter Hyax(f) (which we justified in the notes for the equal-priors
case, and which can be justified more generally using detection theory), then
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where
Agp(1,0) = Ey+ Ey—2Re/ EyEpio.
Recall from the notes that
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Recall also that V(T,) = ReVi(T,) — ReVy(T},). Using v;, vy, and vy to denote the observed
realizations of the random variables V;(1},), Vo(1,), and Vi(T}), we see that

vy = Rewv; — Reuwy.
Putting these findings together yields the decision rule
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which is equivalently restated as
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Expanding the quadratic terms, we have
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and, after dividing both sides by common terms, we have
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We can restate this as

2TZ}

1 = argmax exp [N
0

Or, if we treat T; as a random variable, i.e., T; = ReV; — %, then the decision itself becomes
random and we have

QT]

I = argmax exp [N
0



