Communication Systems

ECE-702 Homework #1

HOMEWORK ASSIGNMENT #1

Due Fri. Apr. 11, 2008 (in class)

- 1. Say that complex-baseband signal $x_z(t)$ is up-converted using the standard quadrature modulator illustrated on page 3 of the review slides, and then down-converted using the standard quadrature demodulator illustrated on page 4, except that the phase of the demodulator oscillator is offset by $\theta(t)$ radians. In other words, at the demodulator, $\cos(2\pi f_c t)$ and $\sin(2\pi f_c t)$ are replaced by $\cos(2\pi f_c t + \theta(t))$ and $\sin(2\pi f_c t + \theta(t))$, respectively.
 - (a) Using $y_z(t)$ to denote the complex-valued demodulator output signal, show that $y_z(t) = x_z(t) \exp(-j\theta(t))$.
 - (b) When $\theta(t) = 2\pi f_o t$, write the output energy spectrum $G_{Y_z}(f)$ in terms of the input energy spectrum $G_{X_z}(f)$.
- 2. Say that real-valued zero-mean white Gaussian noise W(t) with PSD $S_W(f) = N_0/2$ is filtered by an LTI filter with Fourier transform

$$H(f) = \begin{cases} 2 & |f| \le 10\\ 0 & \text{elsewhere} \end{cases}$$

to produce the output N(t).

- (a) What is $R_W(\tau)$, the autocorrelation of W(t)?
- (b) What is $E\{N(t)\}$?
- (c) Give an expression for $S_N(f)$, the output PSD.
- (d) What is $E\{N^2(t)\}$?
- (e) Give the pdf of one sample of N(t), e.g., $f_{N(t_1)}(n)$.
- (f) Write $\Pr\{N(t_1) > 3\}$ in terms of $\operatorname{erf}(\cdot)$.
- 3. Say that a real-valued zero-mean white Gaussian noise W(t) with PSD $S_W(f) = N_0/2$ is filtered by an ideal lowpass filter with bandwidth B_T to produce the output N(t). Denote the impulse response of the lowpass filter by $h_R(t)$.
 - (a) What is $R_N(\tau)$?
 - (b) For what B_T does $E\{N^2(t)\} = 1$?
 - (c) Find $R_Z(\tau)$ for the random process $Z(t) = N(t) N(t t_1)$.
 - (d) Assuming the value of B_T from part (b), which value of t_1 makes $E\{Z^2(t)\} = 0.5$?

4. Say that real-valued zero-mean white Gaussian noise W(t) with PSD $S_W(f) = N_0/2 = 0.005$ is filtered by LTI bandpass filter $H_R(f)$ to produce $N_c(t)$. Then, $N_c(t)$ is input to the standard quadrature demodulator (see on page 4 of review slides) to produce $N_z(t) = N_I(t) + jN_Q(t)$. Say that the power spectrum of the complex baseband output is known to be

$$S_{N_z}(f) = \begin{cases} 0.25 & |f| \le 100 \\ 0 & \text{elsewhere} \end{cases}.$$

- (a) Find $E\{|N_z(t)|^2\}$.
- (b) Find $S_{N_I}(f)$ and $S_{N_I N_Q}(f)$.
- (c) What is $|H_R(f)|$?
- (d) Give the pdf of one sample of $N_I(t)$, e.g., $f_{N_I(t_1)}(n)$.
- (e) Write $\Pr\{N_I(t) > 4\}$ in terms of $\operatorname{erf}(\cdot)$.