Coded Modulation [Ch. 17]:

- Orthogonal modulation had $\mathcal{O}\left(K_{b}\right)$ complexity MLWD but performance no better than BPSK.
- For better performance, map a sequence of info bits onto a sequence of symbols, then transmit using linear stream modulation. If clever, still have $\mathcal{O}\left(K_{b}\right)$ MLWD.
- Fitz calls it "orthogonal modulation with memory."
- This idea subsumes most coding+modulation schemes.
- We focus on performance, spectral efficiency, and demodulator design rather than on code design.

Basic Idea:

- A sequence of K_{b} bits $\left\{I^{(k)}\right\}_{k=1}^{K_{b}}$ is mapped to a sequence of N_{f} constellation labels $\left\{J^{(l)}\right\}_{l=1}^{N_{f}}$.
- Each label $J^{(l)}$ is mapped to symbol $\tilde{D}_{z}^{(l)}=a\left(J^{(l)}\right)$.
- The symbol sequence $\left\{\tilde{D}_{z}^{(l)}\right\}_{l=1}^{N_{f}}$ is M_{s}-ary stream modulated: $X_{z}(t)=\sum_{l=1}^{N_{f}} \tilde{D}_{z}^{(l)} \sqrt{E_{b}} u(t-(l-1) T)$.

Fundamental Goals:

- Out of $M_{s}^{N_{f}}$ possible symbol sequences, choose $2^{K_{b}}$ sequences with large minimum Euclidean distance.
- Ensure that the bit-sequence to symbol-sequence mapping facilitates $\mathcal{O}\left(K_{b}\right)$ MLWD. (Use FSM!)

Outline:

1. Rate- 1 mappings (i.e., $N_{f} \approx K_{b}$).

- System description and WEP union bound.
- $\mathcal{O}\left(K_{b}\right)$ MLWD: Viterbi decoding [slight detour].
- Spectral characteristics.

2. Arbitrary rate mappings: convolutional and trellis codes.

- Basic idea and WEP union bound.
- Spectral characteristics.

Assumptions:

- Bits $\left\{I^{(l)}\right\}_{l=1}^{K_{b}}$ are independent and equally likely.
- Symbol mapping ensures $\mathrm{E}\left[\left|\tilde{D}_{z}^{(l)}\right|^{2}\right]=R=\frac{\# \text { bits }}{\text { symbol }}$.

Coded Modulation for $R=1$:

- K_{b} bits $\left\{I^{(l)}\right\}$ mapped onto K_{b} constellation labels $\left\{J^{(l)}\right\}$ using a finite state machine (FSM).

- FSM characterized by N_{s} modulation states $\sigma^{(l)} \in \Omega_{\sigma}$:

$$
\begin{aligned}
\sigma^{(l+1)} & =g_{1}\left(\sigma^{(l)}, I^{(l)}\right) \\
J^{(l)} & =g_{2}\left(\sigma^{(l)}, I^{(l)}\right)
\end{aligned}
$$

Larger N_{s} means more freedom in sequence design but higher demodulation complexity.

A FSM is well described by a trellis diagram:

This Ho-Cavers-Varaldi trellis code has $N_{s}=4$ and $M_{s}=4$.

Expanded trellis diagram for $K_{b}=4$ bits:

Here, $\nu_{c}=2$ additional zero-bits are used to return to initial state ("termination"). Thus, for $R=1$, have frame length $N_{f}=K_{b}+\nu_{c}$. Note $R_{\text {eff }}=\frac{K_{b}}{K_{b}+\nu_{c}} \approx 1=R$ for large K_{b}.
Also note: $\#$ of valid paths through trellis $=2^{K_{b}}=16$.

MLWD:
Orthogonal modulation leads to a decoupled ML metric:

$$
\begin{aligned}
\hat{\underline{I}} & =\arg \max _{i \in\left\{0, \ldots, 2^{K}-1\right\}} T_{i} \\
& =\arg \min _{i} \sum_{k=1}^{N_{f}}\left|Q^{(k)}-\sqrt{E_{b}} \tilde{d}_{i}^{(k)}\right|^{2}
\end{aligned}
$$

Hence, MLWD \Leftrightarrow finding closest sequence $\left\{\tilde{d}_{i}^{(k)}\right\}_{k=1}^{N_{f}}$
Union bound on WEP can be calculated via:

$$
\Delta_{E}(i, j)=\int\left|x_{i}(t)-x_{j}(t)\right|^{2} d t=E_{b} \sum_{k=1}^{N_{f}}\left|\tilde{d}_{i}^{(k)}-\tilde{d}_{j}^{(k)}\right|^{2}
$$

Example: HCV code with 4-PAM modulation and $K_{b}=4$.

- $J^{(l)} \in[0,1,2,3] \quad \rightarrow \quad \tilde{D}_{z}^{(l)} \in\left[\frac{-3}{\sqrt{5}}, \frac{-1}{\sqrt{5}}, \frac{1}{\sqrt{5}}, \frac{3}{\sqrt{5}}\right]$
- $\frac{1}{2} 2^{K_{b}}\left(2^{K_{b}}-1\right)=120$ distances in error spectrum.
- $\Delta_{E}([0100],[1100])=7.2 E_{b} \gg 4 E_{b}($ recall BPSK $)$.

Spectral Characteristics:

- Though the info bits $\left\{I^{(k)}\right\}$ are iid, the coded symbols $\left\{\tilde{D}_{z}^{(l)}\right\}$ will be correlated.
- Correlated symbols lead to a "shaping" of the power spectrum.
- In some cases, the spectrum becomes more compact, which may be reason enough to use modulation with memory.
- In the sequel, we develop tools to analyze the spectrum.

Energy spectrum (averaged per bit):

$$
D_{X_{z}}(f)=\frac{1}{K_{b}} \mathrm{E}\left\{G_{X_{z}}(f)\right\}
$$

where

$$
\begin{aligned}
x_{i}(t) & =\sqrt{E_{b}} \sum_{k=1}^{N_{f}} \tilde{d}_{i}^{(k)} u(t-T(k-1)) \\
X_{i}(f) & =\sqrt{E_{b}} \sum_{k=1}^{N_{f}} \tilde{d}_{i}^{(k)} U(f) e^{-j 2 \pi f T(k-1)} \\
D_{X_{z}}(f) & =\frac{E_{b}}{K_{b} 2^{K_{b}}} \sum_{i=0}^{2^{K_{b}-1}}\left|\sum_{k=1}^{N_{f}} \tilde{d}_{i}^{(k)} U(f) e^{-j 2 \pi f T(k-1)}\right|^{2}
\end{aligned}
$$

Possible to evaluate above expression for small K_{b}.

Example: Alternate Mark Inversion with $K_{b}=4$ and rectangular $u(t)$, with streamed BPSK for comparison.

$$
\begin{aligned}
{\left[I^{(1)}, I^{(2)}, I^{(3)}, I^{(4)}\right] } & \rightarrow\left[\tilde{D}_{z}^{(1)}, \tilde{D}_{z}^{(2)}, \tilde{D}_{z}^{(3)}, \tilde{D}_{z}^{(4)} \mid \tilde{D}_{z}^{(5)}\right] \\
{[0,0,0,0] } & \rightarrow[0,0,0,0,0] \\
{[0,0,0,1] } & \rightarrow[0,0,0,-\sqrt{2}, \sqrt{2}]
\end{aligned}
$$

Find all $2^{K_{b}}$ sequences \& average the corresponding spectra.

In the case of large K_{b}, need a different approach. . .

$$
\begin{aligned}
D_{X_{z}}(f) & =\frac{E_{b}}{K_{b}} \mathrm{E}\left|\sum_{l=1}^{N_{f}} \tilde{D}_{z}^{(l)} U(f) e^{-j 2 \pi f T(l-1)}\right|^{2} \\
& =\frac{E_{b}}{K_{b}} \sum_{l=1}^{N_{f}} \sum_{k=1}^{N_{f}} \underbrace{\mathrm{E}\left[\tilde{D}_{z}^{(l)} \tilde{D}_{z}^{(k) *}\right]}_{\left.R_{\tilde{D}} l-k\right]}|U(f)|^{2} e^{-j 2 \pi f T(l-k)} \\
& =E_{b}|U(f)|^{2} \frac{1}{K_{b}} \sum_{m=-N_{f}+1}^{N_{f}-1}\left(N_{f}-|m|\right) R_{\tilde{D}}[m] e^{-j 2 \pi f T m} \\
& =E_{b}|U(f)|^{2} \sum_{m=-\infty}^{\infty} R_{\tilde{D}}[m] e^{-j 2 \pi f T m} \quad \text { as } K_{b} \rightarrow \infty \\
& =E_{b}|U(f)|^{2} S_{\tilde{D}}\left(e^{j 2 \pi f T}\right)
\end{aligned}
$$

To find $R_{\tilde{D}}[m]$, note

$$
R_{\tilde{D}}[m]=\mathrm{E}\left[\tilde{D}_{z}^{(l)} \tilde{D}_{z}^{(l-m) *}\right]=\sum_{i} \sum_{j} d_{i} d_{j}^{*} P_{\tilde{D}_{z}^{(l)}, \tilde{D}_{z}^{(l-m)}}\left(d_{i}, d_{j}\right)
$$

- The trellis edge $S^{(l)}$ connecting state $\sigma^{(l)}$ to $\sigma^{(l+1)}$
completely determines the symbol $\tilde{D}_{z}^{(l)}$.
- $S^{(l)}$ can be represented by an integer in $\left\{1, \ldots, 2 N_{s}\right\}$.

Thus we note that

$$
P_{S^{(l)}, S^{(l-m)}}\left(s_{i}, s_{j}\right) \text { specifies } P_{\tilde{D}_{z}^{(l)}, \tilde{D}_{z}^{(l-m)}}\left(d_{i}, d_{j}\right)
$$

To characterize $P_{S^{(l)}, S^{(l-m)}}(\cdot, \cdot)$, we use the fact that

$$
P_{S^{(l)}, S^{(l-m)}}\left(s_{i}, s_{j}\right)=P_{S^{(l)} \mid S^{(l-m)}}\left(s_{i} \mid s_{j}\right) P_{S^{(l-m)}}\left(s_{j}\right)
$$

Assume uniform $P_{S^{(l-m)}}(\cdot)$. To find $P_{S^{(l)} \mid S^{(l-m)}}(\cdot \mid \cdot)$, note

$$
P_{S^{(l)}}\left(s_{i}\right)=\sum_{s_{j}=1}^{2 N_{s}} P_{S^{(l)}, S^{(l-1)}}\left(s_{i}, s_{j}\right)=\sum_{s_{j}=1}^{2 N_{s}} \underbrace{P_{S^{(l)} \mid S^{(l-1)}}\left(s_{i} \mid s_{j}\right)}_{\triangleq[\boldsymbol{S}]_{j, i}} P_{S^{(l-1)}}\left(s_{j}\right)
$$

where $[\boldsymbol{S}]_{j, i}$ are easily determined from $g_{1}\left(I^{(l)}, \sigma^{(l)}\right)$.
Defining the row vector $\underline{P}_{S^{(l)}} \triangleq\left[P_{S^{(l)}}(1), \ldots, P_{S^{(l)}}\left(2 N_{s}\right)\right]$,

$$
\begin{aligned}
\underline{P}_{S^{(l)}} & =\underline{P}_{S^{(l-1)}} \boldsymbol{S}, \quad \underline{P}_{S^{(l-1)}}=\underline{P}_{S^{(l-2)}} \boldsymbol{S} \\
\Rightarrow \underline{P}_{S^{(l)}} & =\underline{P}_{S^{(l-m)}} \boldsymbol{S}^{m}
\end{aligned}
$$

From the definition of $[\boldsymbol{S}]_{j, i}$ above, we can now see that

$$
P_{S^{(l)} \mid S^{(l-m)}}\left(s_{i} \mid s_{j}\right)=\left[\boldsymbol{S}^{m}\right]_{j, i} .
$$

AMI Example: Assume $\underline{P}_{S^{(l-m)}}=\left[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right]$.

$$
\boldsymbol{S}=\left(\begin{array}{cccc}
0.5 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0.5 \\
0.5 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0.5
\end{array}\right)
$$

For any $m>1$, notice that all entries of \boldsymbol{S}^{m} equal 0.25 !
\leadsto Edges $S^{(l)} \& S^{(l-m)}$ independent for $m>1$.
\leadsto Symbols $\tilde{D}_{z}^{(l)} \& \tilde{D}_{z}^{(l-m)}$ uncorrelated for $m>1$.
It can be shown (see next page) that

$$
\begin{aligned}
\left\{R_{\tilde{D}}[0], R_{\tilde{D}}[1], R_{\tilde{D}}[2], R_{\tilde{D}}[3], \ldots\right\} & =\left\{1,-\frac{1}{2}, 0,0, \ldots\right\} \\
\Rightarrow S_{\tilde{D}}\left(e^{j 2 \pi f T}\right)=\sum_{m=-\infty}^{\infty} R_{\tilde{D}}[m] e^{-j 2 \pi f T m} & =1-\cos (2 \pi f T)
\end{aligned}
$$

So how did we figure out that $-\frac{1}{2}=R_{\tilde{D}}[1]=R_{\tilde{D}}[-1]^{*}$?

$$
\begin{aligned}
& \begin{aligned}
\underbrace{P_{S^{(l-1)}}\left(s_{j}\right)}_{\frac{1}{4} \forall j} & \underbrace{P_{S^{(l)} \mid S^{(l-1)}}\left(s_{i} \mid s_{j}\right)}
\end{aligned}=\underbrace{P_{S^{(l)}, S^{(l-1)}}\left(s_{i}, s_{j}\right)}_{\left(\begin{array}{cccc}
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right)} \\
& \begin{aligned}
R_{\tilde{D}}[1]= & \underbrace{\sum_{i} \sum_{j} d_{j}^{*} P_{\tilde{D}_{z}^{(l)}} \tilde{D}_{z}^{(l-1)}}{ }^{\left(d_{i}, d_{j}\right) d_{i}} \\
& (0-\sqrt{2} \sqrt{2} 0)^{*}\left(\begin{array}{cccc}
\frac{1}{8} & \frac{1}{8} & 0 & 0 \\
0 & 0 & \frac{1}{8} & \frac{1}{8} \\
\frac{1}{8} & \frac{1}{8} & 0 & 0 \\
0 & 0 & \frac{1}{8} & \frac{1}{8}
\end{array}\right)\left(\begin{array}{c}
0 \\
-\sqrt{2} \\
\sqrt{2} \\
0
\end{array}\right)
\end{aligned} \\
& =-\frac{1}{2}
\end{aligned}
$$

Coded Modulation for General R :

- K_{b} bits parsed into N_{b} blocks of K_{m} bits $\left(K_{b}=N_{b} K_{m}\right)$
- The FSM accepts $\underline{I}^{(l)}$, a block of K_{m} bits, and produces $\underline{J}^{(l)}$, a block of N_{m} constellation labels.

$$
\begin{aligned}
\sigma^{(l+1)} & =g_{1}\left(\sigma^{(l)}, \underline{I}^{(l)}\right) \\
\underline{J}^{(l)} & =g_{2}\left(\sigma^{(l)}, \underline{I}^{(l)}\right)
\end{aligned}
$$

- Label sequence drives M_{s}-ary linear stream modulation:

$$
\tilde{D}_{z}^{\left((l-1) N_{m}+i\right)}=a\left(J_{i}^{(l)}\right) \text { for } i=1, \ldots, N_{m}
$$

- Total \# of symbols in frame is $N_{f}=N_{b} N_{m}+\nu_{c}$.
- Effective rate (bits/channel-use) is

$$
R_{\mathrm{eff}}=\frac{K_{b}}{N_{b} N_{m}+\nu_{c}}=\frac{N_{b} K_{m}}{N_{b} N_{m}+\nu_{c}} \approx \frac{K_{m}}{N_{m}} \triangleq R .
$$

- Might choose $R>1$ or $R<1$ depending on desired performance/spectral-efficiency tradeoff.
- Symbols always normalized so that $\mathrm{E}\left|\tilde{D}_{z}^{(l)}\right|^{2}=R$.

$R<1$ Example: Convolutional Code

- $\operatorname{BPSK}\left(M_{s}=2\right), R=\frac{1}{2}\left(K_{m}=1, N_{m}=2\right), N_{s}=8$
- $\approx 2 \mathrm{~dB}$ better than 16 -FSK at similar spectral efficiency.

$\underline{R>1}$ Example: Trellis Code
- 8-PSK $\left(M_{s}=8\right), R=2\left(K_{m}=2, N_{m}=1\right), N_{s}=4$.
- $\approx 3 \mathrm{~dB}$ better than QPSK at same spectral efficiency.

Spectral efficiency of coded modulation schemes:

Spectral Shaping Example: the Miller Code

- $N_{s}=4, \operatorname{BPSK}\left(M_{s}=2\right), R=\frac{1}{2}\left(K_{m}=1, N_{m}=2\right)$
- Run Length Limited: ≤ 4 same symbols in a row.
- Used in magnetic recording, since low frequencies interfere with servo mechanism of read/write head.

Analyzing Spectral Characteristics when $N_{m}>1$
Notice: $N_{m}=\#$ of symbols/block $=\#$ symbols/edge.

$$
D_{X_{z}}(f)=\frac{E_{b}}{K_{b}} \sum_{l=1}^{N_{f}} \sum_{k=1}^{N_{f}} \mathrm{E}\left[\tilde{D}_{z}^{(l)} \tilde{D}_{z}^{(k) *}\right]|U(f)|^{2} e^{-j 2 \pi f T(l-k)}
$$

$\mathrm{E}\left[\tilde{D}_{z}^{(l)} \tilde{D}_{z}^{(k) *}\right]=R_{\tilde{D}}\left[l-k,\langle l-1\rangle_{N_{m}}+1\right]$ "cyclostationary"
As $K_{b} \rightarrow \infty$, the same techniques used before yield

$$
\begin{aligned}
D_{X_{z}}(f) & =E_{b}|U(f)|^{2} \sum_{m=-\infty}^{\infty} \underbrace{\frac{R}{N_{m}} \sum_{l=1}^{N_{m}} R_{\tilde{D}}[m, l]}_{\triangleq \bar{R}_{\tilde{D}}[m]} e^{-j 2 \pi f T m} \\
& =E_{b}|U(f)|^{2} \bar{S}_{\tilde{D}}\left(e^{j 2 \pi f T}\right)
\end{aligned}
$$

To find $R_{\tilde{D}}[m, l]$, we start with the definition
$R_{\tilde{D}}[m, l]=\sum_{i} \sum_{j} d_{i} d_{j}^{*} P_{\tilde{D}_{z}^{\left((q-1) N_{m}+l\right)}, \tilde{D}_{z}^{\left((q-1) N_{m}+l-m\right)}}\left(d_{i}, d_{j}\right), \forall q$
Noting that the edge determines the symbol-block:

$$
S^{(q)} \quad \rightarrow\left\{\tilde{D}_{z}^{\left((q-1) N_{m}+l\right)}\right\}_{l=1}^{N_{m}}
$$

1. Use, as before, $\left[\boldsymbol{S}^{p}\right]_{j, i}=P_{S^{(q) \mid} S^{(q-p)}}(i \mid j)$ and the uniform $P_{S^{(q-p)}}(\cdot)$ assumption to find $P_{S^{(q)}, S^{(q-p)}}(\cdot, \cdot)$.
2. Use $P_{S^{(q),} S^{(q-p)}}(\cdot, \cdot)$ and the trellis description to find $R_{\tilde{D}}[m, l]$.
