
Department of Electrical Engineering EE281

Introduction to MATLAB

on the Region IV Computing Facilities

1 What is Matlab?

Matlab is a high-performance interactive software package for scienti�c and
enginnering numeric computation. Matlab integrates numerical analysis,
matrix computation, signal processing, and graphics in an easy-to-use envi-
ronment without traditional programming.

The name Matlab stands for matrix laboratory. Matlab was originally
written to provide easy access to the matrix software developed by the LIN-
PACK and EISPACK projects.

Matlab is an interactive system whose basic data element is a matrix that
does not require dimensioning. Furthermore, problem solutions are expressed
in Matlab almost exactly as they are written mathematically.

Matlab has evolved over the years with inputs from many users. Matlab

Toolboxes are specialized collections of Matlab �les designed for solving
particular classes of functions. Currently available toolboxes include:

� signal processing � control system � optimization
� neural networks � system identi�cation � robust control
� � analysis � splines � symbolic mathematics
� image processing � statistics

2 Accessing Matlab at ER4

Sit down at a workstation. Log on.

login: smithj <press return>

password: 1234js <press return>

Use the mouse button to view the Root Menu. Drag the cursor to \Design
Tools" then to \Matlab." Release the mouse button. You are now running
the Matlab interactive software package. The prompt is a double \greater
than" sign. You may use emacs line editor commands and the arrow keys
while typing in Matlab.

1

3 An Introductory Demonstration

Execute the following command to view a quick introduction to Matlab.

>> intro

(Use your mouse to position windows on the screen for easy viewing.)

4 Making and Printing Graphs

Matlab commands introduced in this section:
plot, subplot, grid, title, xlabel, ylabel, stem, print, clg

Unix commands introduced in this section:
ghostview, lpr

4.1 Example signal

Matlab represents objects as vectors and matrices. Therefore, a signal is
represented by a vector of samples.
Generate 500 samples of a sine wave of frequency 60Hz and sampled at 8 kHz.

>> n=[0:499]/8000;

>> x=sin(2*pi*60*n);

The time indices and signal amplitudes are stored in the row vectors n and
x, respectively. Note that Matlab returns the result of command unless
output is suppressed by ending the command with a semicolon.

4.2 Plot commands

Creating graphs in Matlab is easy.

>> plot(x)

You can specify two vectors of equal length in the plot command to specify
both the horizontal and vertical axes

>> plot(n,x)

Note how the horizontal axes is now in units of seconds, rather than sample
number. Let's title the graph, label the axes, and place a grid on the plot.

2

>> plot(n,x)

>> title('Title of plot')

>> xlabel('seconds')

>> ylabel('amplitude')

>> grid

By specifying elements of the vectors, you may plot a selected portion of the
signal.

>> plot(n(1:50),x(1:50))

Subplots

We can place several graphs on a single page using the subplot command.
The arguments in subplot specify the number of rows and columns, then
the position of the plot.

>> subplot(2,1,1),plot(x,n)

>> title('plot a')

>> subplot(2,1,2),plot(x(1:50))

>> title('plot b')

And much more!

The Matlab graphics tools provide options for line types, overlaid curves,
data point symbols, line colors, etc. Use the help command to explore these
commands:

plot, semilogx, semilogy, stem, hold, mesh, contour

For a colorful demo of Matlab graphics, type expo. Note that the GUI
(graphical user interface) tools to build the demo are part of Matlab, and
can be used to make menu-driven, point-and-click program interfaces for
course work, teaching, and research projects.

4.3 Printing

To print your �gure we will �rst create a �le called \temp.ps" containing the
plot, then view the �le on the screen, the send the �le to the printer. In
this fashion, you can save �les of �gures you generate using Matlab, and
can view those �les on your workstation screen, and can incorporate your
Matlab plots into documents generated using Latex, Word, Claris, etc.

>> print temp -f1

3

The \-f1" option selects the graph window labeled \Figure No. 1."
In your workstation window, type

smithj> ghostview temp.ps

If a printout is desired, then the �gure or the .ps �le can be sent to the printer
from Matlab or the workstation window

in Matlab window >> print -f1

in workstation window smithj> lpr temp.ps

To clear the �gure in Matlab and to return to plotting only one graph in a
�gure, type clg for \clear graph."

4.4 Importing data for graphing

Data generated by other programs can be ported into Matlab for easy
graphics or further computation. See Appendix 1 for an example program
(courtesy Je� Spooner).
Data generated by Matlab can be stored, transferred and reloaded into
Matlab using �les with the .mat su�x. For example, load and plot the ca-
nine electrocardiogram stored in the vector \ecg" in a �le named canine.mat.

>> load /user2/faculty/potter/canine

>> plot(ecg)

You can use the save command to save data �les while working in Matlab

(see help save).

5 Getting Help

On-line documentation inMatlab is available using the help command. To
have the screen scroll through long help �les, use more on. To exit a scrolling
help �le, hit q. To disable the scrolling, use more off.

>> more on

>> help help

>> help fft

>> more off

4

6 M-�les

Matlab puts many commands at your disposal. Additionally, you can create
your own commands or programs. You may wish to write aMatlab program
whenever you anticipate executing a sequence of statements several times or
again at a later session. To create your own Matlab program, use your
favorite text editor and save the �le with extension .m in the directory where
you will run Matlab (see help chdir). You many execute your m-�le by
typing the �lenames (without the .m extension) at the command prompt
(>>). There are two kinds of m-�les: script �les and functions.

6.1 Script Files

Executing a script �le is exactly like typing the commands it contains at the
command prompt. This is useful in executing a sequence of commands while
composing and debugging a m-�le.

6.2 Function Files

Functions have designated input and output variables. Any other variable
used within a function are local variables, which do not remain after the
function terminates. Many of the functions supplied inMatlab are actually
m-�le functions. For example

>> type sinc

Avoid loops

Since Matlab is an interpreted language, do loops and for loops are very
ine�cient. Loops can often be avoided by using vectors and the following
commands

tt sum prod .* .^ : toeplitz

For example, the sinusoid signal in Section 4.1 was generated without loops.

7 Controls Toolbox

The control toolbox contains a collection ofMatlab �le designed for solving
controls and linear systems problems. For reference, Appendix 2 contains a
categorized listing of available commands. This list is available on-line

>> more on; help control

5

An interesting demonstration routine is also available

>> ctrldemo

>> fourier

8 Signal Processing Toolbox

The signal processing toolbox contains a collection of Matlab �le designed
for designing discrete and continuous time �lters, �ltering, statistical signal
processing, spectrum analysis, and linear systems problems. For reference,
Appendix 3 contains a categorized listing of available commands. This list
is available on-line

>> more on; help signal

Interesting demonstration routines are also available

>> filtdemo

>> moddemo

9 Finishing

To exit Matlab

>> quit

Having quit Matlab, delete any �les you no longer need using the rm com-
mand, then use the Root Menu to logout.

6

Appendix 1

Using MATLAB to plot data generated by other programs

For the C language:

/* This file may be compiled using the format:

gcc filename.c -o exefile -lm

Running this program creates a file named "outvar.dat". The

data for a cosine and sine function is calculated and saved

as three columns of numbers.

To plot the data within MATLAB, you may use the following

from a MATLAB window:

>> load outvar.dat

>> x = outvar(:,1);

>> y = outvar(:,2);

>> z = outvar(:,3);

>> plot(x,y)

>> hold on

>> plot(x,z)

>> hold off

*/

#include <stdio.h> /* standard Input/Output */

#include <stdlib.h> /* standard library */

#include <math.h> /* math library */

main()

{

double x,y,z; /* variables used */

FILE *fp; /* file pointer */

/* Check to see if there are any file errors. */

/* This will either create a new file OUTVAR.DAT, or */

/* write over an existing version of the file. */

if ((fp = fopen("outvar.dat", "w")) == NULL)

{

printf("Cant open OUTVAR.DAT \n");

exit(1);

}

7

/* This loop is used to save y=cos(x).*/

for(x=0; x<=10; x += 0.1)

{

y = cos(x);

z = sin(x);

fprintf(fp, "%f %f %f",x,y,z); /* save the x and y values */

fprintf(fp, "\n"); /* create a line break */

}

fclose(fp); /* close the file */

}

Comment:
For Other High Level Languages: If you want to use Fortran, Pascal, Basic,
or some other language and MATLAB to generate plots you proceed in a
similar manner to how you do for C. Note that any space delimited ASCII
data �le can be read by MATLAB (i.e. columns of data separated by any
number of "blank" spaces). Hence, if you use any high level language simply
output your data into an ASCII �le and use the MATLAB commands given
above.

8

Appendix 2

9

Appendix 3

10

Appendix 4

11

