EE-597 Homework #3

HOMEWORK ASSIGNMENT #3

Due Tues. Oct. 19, 1999 (in class)

1. <u>Practical Bit Allocation:</u>

With regards to bit allocation for transform coder outputs, we proved that the constrained optimization

$$\min_{\{R_k\}} \sum_{k=0}^{N-1} \sigma_{y_k}^2 2^{-2R_k} \quad \text{s.t.} \quad R = \frac{1}{N} \sum_{k=0}^{N-1} R_k$$

(where $\sigma_{y_k}^2$ is the variance of the k^{th} transform output, R_k is the bit rate allocated for transmission of this output, and R is the average bit rate over all outputs) led to the optimal bit allocation rule

$$R_{\ell}^{\rm opt} = R + \frac{1}{2} \log_2 \left(\frac{\sigma_{y_{\ell}}^2}{\left(\prod_{k=0}^{N-1} \sigma_{y_k}^2 \right)^{1/N}} \right).$$

Recognizing that the equation above may yield impractical (e.g., negative or non-integer) values for R_{ℓ}^{opt} , we discussed a practical bit allocation strategy where, one by one, R_{ℓ} are fixed at practical values and the remaining $\{R_k\}$ are re-optimized. Specifically, consider the following algorithm:

$$\begin{split} \mathcal{K}_a &= \{\}, & \text{ %set of allocated output indices } \\ \mathcal{K}_u &= \{0, 1, 2, \dots, N-1\}, & \text{ %set of unallocated output indices } \\ \text{while } \mathcal{K}_u &\neq \{\}, & \\ & \text{calculate quasi-optimal } \{R_k^{\text{qua}}: k \in \mathcal{K}_u\}, & \\ & \text{set } k_* = \arg\min_{k \in \mathcal{K}_u} R_k^{\text{qua}}, & \\ & \text{round } R_{k_*}^{\text{qua}} \text{ to nearest non-negative integer, saving as practical } R_{k_*} & \\ & \text{remove } k_* \text{ from } \mathcal{K}_u \text{ and add } k_* \text{ to } \mathcal{K}_a, & \\ & \text{end.} \end{split}$$

The step "calculate quasi-optimal $\{R_k^{qua}: k \in \mathcal{K}_u\}$ " requires solving the following constrained optimization problem.

$$\min_{\{R_k:k\in\mathcal{K}_u\}}\sum_{k\in\mathcal{K}_u}\sigma_{y_k}^2 2^{-2R_k} \quad \text{s.t.} \quad R = \frac{1}{N}\sum_{k=0}^{N-1}R_k.$$

Prove that the solution is given by

$$R_{\ell}^{\text{qua}} = \frac{NR - \sum_{k \in \mathcal{K}_a} R_k}{\text{size}(\mathcal{K}_u)} + \frac{1}{2} \log_2 \left(\frac{\sigma_{y_{\ell}}^2}{\left(\prod_{k \in \mathcal{K}_u} \sigma_{y_k}^2 \right)^{1/\operatorname{size}(\mathcal{K}_u)}} \right) \quad \text{for} \quad \ell \in \mathcal{K}_u.$$

(Don't be intimidated—this is a lot easier than it might look!)

2. Adaptive Transform Coding:

In this problem you will implement the adaptive transform coder in Fig. 1.

Figure 1: An Adaptive Transform Coder

The input x(n) will be an "autoregressive" (AR) process generated by filtering zero-mean white Gaussian noise v(n) ($\sigma_v^2 = 1$) through linear system $H(z) = B(z)/A(z) = 1/(1 - 0.8z^{-1})$.

The quantizers will be uniform with $L_k(m) = 2^{R_k(m)}$ levels, where $R_k(m)$ is calculated using the method of Problem 1, but with $\sigma_{y_k}^2$ replaced by the backward variance estimate $\hat{\sigma}_{y_k}^2(m)$:

$$\hat{\sigma}_{y_k}^2(m) = (1-\alpha)\tilde{y}_k^2(m-1) + \alpha\,\hat{\sigma}_{y_k}^2(m-1), \qquad k = 0, \dots, N-1.$$

Assume $\alpha = 0.95$, transform size N = 16, average bit rate R = 4 bits/sample, and quantizer design factor $\phi_{y_k} = 3$. (You should not be generating any random data until part (e) below!)

- (a) Plot the input power spectrum $S_x(e^{j\omega})$. (Hint: Realize $x(n) = \sum_{i=0}^{\infty} h_i v(n-i)$, where $\{h_0, h_1, \ldots\}$ is the impulse response of H(z). Use the Matlab command impz to find a truncated approximation of $\{h_i\}$.)
- (b) What is the asymptotic reconstruction error variance $\sigma_r^2|_{\text{TC},N} = \text{var}(\tilde{x}(n) x(n))$ for the optimal infinite-dimensional transform and optimal bit allocation?
- (c) What is the reconstruction error variance $\sigma_r^2|_{\text{TC},N}$ when using the optimal $N \times N$ transform and optimal bit allocation? (Hint: Use toeplitz to construct the autocorrelation matrix and eig to compute the eigendecomposition.)
- (d) For transform **T**, prove that $(\sigma_{y_0}^2, \ldots, \sigma_{y_{N-1}}^2)^t = \text{diag}(\mathbf{TR}_x \mathbf{T}^t)$, where $\text{diag}(\cdot)$ extracts the main diagonal of a matrix. What is the reconstruction error variance $\sigma_r^2|_{\mathrm{TC},N}$ when using the DCT and optimal bit allocation? (Hint: Construct **T** with dctmtx.)
- (e) For M = 1000, generate an MN-length realization of x(n) and implement the adaptive TC scheme of Fig. 1 using a DCT. (Hint: use filter to create x(n), initialize $\hat{\sigma}_{y_k}^2(0) = \sigma_x^2 \quad \forall k$, and use [R_srt,indx]=sort(R_opt) in the bit allocation procedure.) One on plot, display the optimal bit allocations for the two branches k = 0 and k = N-1 together with the practical bit allocations for the same branches (see Fig. 2 for an example). What is the mean-squared reconstruction error $\mathcal{E}_{\rm TC} = \frac{1}{MN} \sum_{n=0}^{MN} |\tilde{x}(n) - x(n)|^2$?

- (f) For the same input sequence x(n), compute \mathcal{E}_{PCM} for the PCM system in Fig. 3. Assume uniform quantization with $L = 2^R$ levels and quantizer design factor $\phi_x = 3$. (See previous homework solutions for efficient ways of doing this.)
- (g) Discuss the differences between the various values of $\sigma_r^2|_{\text{TC},N}$ and \mathcal{E} computed in parts (b)-(f).

Figure 2: Optimal and practical bit allocations for output branches k = 0 and k = N-1 versus input block m.

Figure 3: PCM system.

3. Suboptimal Transforms:

Now we'll compare the performance of various transforms as a function of transform dimension.

(a) Consider the AR input process generated by passing zero-mean white Gaussian noise through the filter

$$H(z) = \frac{1}{A(z)} = \frac{1}{1 - 0.8z^{-1} + 0.4z^{-2}}.$$

Assuming optimal bit allocation, plot theoretical TC gain over PCM for transform dimensions N = 1, 2, 4, 8, 16, 32, 64 and the following transforms: KLT, DCT, real-DFT, DHT. Superimpose asymptotic $(N \to \infty)$ TC gain in the form of a dashed line. See Fig. 4 for an example. (Hint: create appropriate matrix **T**, then use 2(d).)

- (b) Repeat for $A(z) = 1 + 0.7z^{-1} + 0.2z^{-2}$.
- (c) Discuss all relevant features of the two plots.

Figure 4: Example of TC-gain-over-PCM versus transform dimension ${\cal N}$ for various transforms and a lowpass source.