
EE-597 Audio Signal Processing Fall 1999

Handout #3 Sept. 21, 1999

HOMEWORK ASSIGNMENT #2

Due Thurs. Sept. 30, 1999 (in class)

1. Optimal Predictor Design:

In this problem you will experiment with linear predictor design.

(a) Consider input x(n) characterized by the model x(n) =
∑Nb

i=0
biv(n − i), where v(n) is zero-

mean white Gaussian noise with variance σ2

v. Derive an expression for the autocorrelation

rx(k) in terms of bi and σ2

v.

(b) Prove that the power spectrum Sx(ejω) =
∑

∞

k=−∞
rx(k)e−jωk can be written

Sx(ejω) = −rx(0) + 2
∞
∑

k=0

rx(k) cos(ωk). (1)

(From (1), it should be evident that Sx(ejω) is real-valued and symmetric.) Assuming σ2
v = 1

and {bi} in the table below, plot rx(k) and Sx(ejω) calculated using (1).

b0 b1 b2 b3

1 0.9 0.8 0.7

(c) Calculate the spectral flatness measure

SFMx =
exp

(

1

2π

∫ π

−π
lnSx(ejω)dω

)

1

2π

∫ π

−π
Sx(ejω)dω

and σ2

e

∣

∣

min
as predictor length N goes to infinity. (Hint: use a Riemann approximation of the

integral—do not use the symbolic int command.) How does σ2
e

∣

∣

min
compare to σ2

v?

(d) Calculate prediction coefficients and σ2
e

∣

∣

min,N
for predictor lengths N = 3 and N = 20. (You

may find the Matlab command toeplitz useful for construction of the autocorrelation matrix.)

(e) From the diagram below, it can be seen that E(z) = B(z)
(

1−H(z)
)

V (z) where B(z) =
∑Nb

i=0
biz

−i and H(z) =
∑Nh

i=1
hiz

−i. Using convolution, it is possible to calculate {qi}, the

impulse response of Q(z) = B(z)
(

1−H(z)
)

, and hence re(k) by the method of part (a).

+
−

x(n)v(n)

x̂(n)

e(n)
B(z)

H(z)

Plot re(k) and Se(e
jω) for the two predictors. Is the prediction error white? How “flat” is the

error spectrum? How could one quantify “flatness”?

(f) Using a M = 10000-length version of x(n) in Matlab and the two predictors designed in 1(c),

compute the prediction error sequences e(n) and measure their variance. How do they compare

to the theoretical σ2

e

∣

∣

min,N
?
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2. DPCM Structures:

Here you will investigate the four PCM/DPCM structures discussed in the notes.

(a) Using x(n) from 1(d) and the length-3 predictor from 1(c), implement the coder/decoder in

Fig. 1 and compute the mean-squared reconstruction error E = 1

M

∑M−1

n=0
|y(n) − x(n)|2.

+ +
−

x(n) y(n)e(n)e(n)

x̂(n) ŷ(n)
predictor

H(z)
predictor

H(z)

Figure 1: Prediction Error Transmission System.

(b) Repeat for the PCM system in Fig. 2. Assume uniform quantization with L = 32, and choose

∆ to minimize E based on the experiments you did in Homework 1.

x(n) y(n)
quantizer

Figure 2: PCM System.

(c) Repeat for the coder/decoder in Fig. 3 (but make sure to redesign ∆ appropriately). Discuss

how E compares with var
(

ẽ(n) − e(n)
)

.

++
−

x(n)

x̂(n)

y(n)

ŷ(n)

e(n) ẽ(n)ẽ(n)
quantizer

predictor

H(z)
predictor

H(z)

Figure 3: Predictive Coding System.

(d) Repeat for the coder/decoder in Fig. 4 using the same quantizer as in (c). Discuss how E

compares with var
(

ẽ(n) − e(n)
)

.

+

+

+
−

x(n)

x̃(n)
ˆ̃x(n)

y(n)

ŷ(n)

quantizer
e(n) ẽ(n) ẽ(n)

predictor

H(z)

predictor

H(z)

Figure 4: Differential-PCM System.

(e) Since E was calculated using the same input signal in parts (a)-(d), a direct comparison of the

4 systems is possible. Discuss the advantages and disadvantages of each system.
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3. Optimal Coding:

Now that you are having fun, it’s time to investigate minimum bit rate versus SNR for coding of

ẽ(n) and x(n).

(a) Using x(n) from 1(a), the structure in Fig. 4, and a predictor length of N = 20, calculate the

SNR (= 10 log10(σ
2

x/E)) for uniform quantizers with L = 2, 4, 8, 16, 32, 64, 128. Use quantiza-

tion stepsize ∆ = 2emax/L based on the table below, assuming σ2
e ≈ σ2

e

∣

∣

min,N
.

L 2 4 8 16 32 64 128
emax/σe 1.6 2 2.3 2.7 3.1 3.4 3.7

(b) For the same input and DPCM systems, calculate the entropy rate of ẽ(n). (You may as-

sume that e(n) is zero-mean Gaussian and use erfc as in Homework 1. σ2

e can be obtained

experimentally for each L.)

(c) Using the results from (a) and (b), plot the bit rate anticipated from optimal entropy coding

of ẽ(n) (see Fig. 5) versus SNR. Superimpose, on the same plot, the bit rate versus SNR curve

for the optimal coder of x(n). Discuss.

++

+

−

x(n)

x̃(n)
ˆ̃x(n)

y(n)

ŷ(n)

quantizer
e(n) ẽ(n)ẽ(n)

predictor

H(z)predictor

H(z)

entropy

encoder

entropy

decoder

Figure 5: Entropy-Encoded DPCM System.
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