HOMEWORK ASSIGNMENT \#2

Due Thurs. Sept. 30, 1999 (in class)

1. Optimal Predictor Design:

In this problem you will experiment with linear predictor design.
(a) Consider input $x(n)$ characterized by the model $x(n)=\sum_{i=0}^{N_{b}} b_{i} v(n-i)$, where $v(n)$ is zeromean white Gaussian noise with variance σ_{v}^{2}. Derive an expression for the autocorrelation $r_{x}(k)$ in terms of b_{i} and σ_{v}^{2}.
(b) Prove that the power spectrum $S_{x}\left(e^{j \omega}\right)=\sum_{k=-\infty}^{\infty} r_{x}(k) e^{-j \omega k}$ can be written

$$
\begin{equation*}
S_{x}\left(e^{j \omega}\right)=-r_{x}(0)+2 \sum_{k=0}^{\infty} r_{x}(k) \cos (\omega k) \tag{1}
\end{equation*}
$$

(From (1), it should be evident that $S_{x}\left(e^{j \omega}\right)$ is real-valued and symmetric.) Assuming $\sigma_{v}^{2}=1$ and $\left\{b_{i}\right\}$ in the table below, plot $r_{x}(k)$ and $S_{x}\left(e^{j \omega}\right)$ calculated using (1).

b_{0}	b_{1}	b_{2}	b_{3}
1	0.9	0.8	0.7

(c) Calculate the spectral flatness measure

$$
\mathrm{SFM}_{x}=\frac{\exp \left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln S_{x}\left(e^{j \omega}\right) d \omega\right)}{\frac{1}{2 \pi} \int_{-\pi}^{\pi} S_{x}\left(e^{j \omega}\right) d \omega}
$$

and $\left.\sigma_{e}^{2}\right|_{\min }$ as predictor length N goes to infinity. (Hint: use a Riemann approximation of the integral - do not use the symbolic int command.) How does $\left.\sigma_{e}^{2}\right|_{\text {min }}$ compare to σ_{v}^{2} ?
(d) Calculate prediction coefficients and $\left.\sigma_{e}^{2}\right|_{\min , N}$ for predictor lengths $N=3$ and $N=20$. (You may find the Matlab command toeplitz useful for construction of the autocorrelation matrix.)
(e) From the diagram below, it can be seen that $E(z)=B(z)(1-H(z)) V(z)$ where $B(z)=$ $\sum_{i=0}^{N_{b}} b_{i} z^{-i}$ and $H(z)=\sum_{i=1}^{N_{h}} h_{i} z^{-i}$. Using convolution, it is possible to calculate $\left\{q_{i}\right\}$, the impulse response of $Q(z)=B(z)(1-H(z))$, and hence $r_{e}(k)$ by the method of part (a).

Plot $r_{e}(k)$ and $S_{e}\left(e^{j \omega}\right)$ for the two predictors. Is the prediction error white? How "flat" is the error spectrum? How could one quantify "flatness"?
(f) Using a $M=10000$-length version of $x(n)$ in Matlab and the two predictors designed in 1 (c), compute the prediction error sequences $e(n)$ and measure their variance. How do they compare to the theoretical $\left.\sigma_{e}^{2}\right|_{\min , N}$?

2. DPCM Structures:

Here you will investigate the four PCM/DPCM structures discussed in the notes.
(a) Using $x(n)$ from $1(\mathrm{~d})$ and the length-3 predictor from $1(\mathrm{c})$, implement the coder/decoder in Fig. 1 and compute the mean-squared reconstruction error $\mathcal{E}=\frac{1}{M} \sum_{n=0}^{M-1}|y(n)-x(n)|^{2}$.

Figure 1: Prediction Error Transmission System.
(b) Repeat for the PCM system in Fig. 2. Assume uniform quantization with $L=32$, and choose Δ to minimize \mathcal{E} based on the experiments you did in Homework 1.

Figure 2: PCM System.
(c) Repeat for the coder/decoder in Fig. 3 (but make sure to redesign Δ appropriately). Discuss how \mathcal{E} compares with $\operatorname{var}(\tilde{e}(n)-e(n))$.

Figure 3: Predictive Coding System.
(d) Repeat for the coder/decoder in Fig. 4 using the same quantizer as in (c). Discuss how \mathcal{E} compares with $\operatorname{var}(\tilde{e}(n)-e(n))$.

Figure 4: Differential-PCM System.
(e) Since \mathcal{E} was calculated using the same input signal in parts (a)-(d), a direct comparison of the 4 systems is possible. Discuss the advantages and disadvantages of each system.

3. Optimal Coding:

Now that you are having fun, it's time to investigate minimum bit rate versus SNR for coding of $\tilde{e}(n)$ and $x(n)$.
(a) Using $x(n)$ from $1(\mathrm{a})$, the structure in Fig. 4, and a predictor length of $N=20$, calculate the $\operatorname{SNR}\left(=10 \log _{10}\left(\sigma_{x}^{2} / \mathcal{E}\right)\right)$ for uniform quantizers with $L=2,4,8,16,32,64,128$. Use quantization stepsize $\Delta=2 e_{\max } / L$ based on the table below, assuming $\left.\sigma_{e}^{2} \approx \sigma_{e}^{2}\right|_{\min , N}$.

L	2	4	8	16	32	64	128
$e_{\max } / \sigma_{e}$	1.6	2	2.3	2.7	3.1	3.4	3.7

(b) For the same input and DPCM systems, calculate the entropy rate of $\tilde{e}(n)$. (You may assume that $e(n)$ is zero-mean Gaussian and use erfc as in Homework 1. σ_{e}^{2} can be obtained experimentally for each L.)
(c) Using the results from (a) and (b), plot the bit rate anticipated from optimal entropy coding of $\tilde{e}(n)$ (see Fig. 5) versus SNR. Superimpose, on the same plot, the bit rate versus SNR curve for the optimal coder of $x(n)$. Discuss.

Figure 5: Entropy-Encoded DPCM System.

