Audio Signal Processing

Handout #3

EE-597

HOMEWORK ASSIGNMENT #2

Due Thurs. Sept. 30, 1999 (in class)

1. Optimal Predictor Design:

In this problem you will experiment with linear predictor design.

- (a) Consider input x(n) characterized by the model $x(n) = \sum_{i=0}^{N_b} b_i v(n-i)$, where v(n) is zeromean white Gaussian noise with variance σ_v^2 . Derive an expression for the autocorrelation $r_x(k)$ in terms of b_i and σ_v^2 .
- (b) Prove that the power spectrum $S_x(e^{j\omega}) = \sum_{k=-\infty}^{\infty} r_x(k) e^{-j\omega k}$ can be written

$$S_x(e^{j\omega}) = -r_x(0) + 2\sum_{k=0}^{\infty} r_x(k)\cos(\omega k).$$
 (1)

(From (1), it should be evident that $S_x(e^{j\omega})$ is real-valued and symmetric.) Assuming $\sigma_v^2 = 1$ and $\{b_i\}$ in the table below, plot $r_x(k)$ and $S_x(e^{j\omega})$ calculated using (1).

(c) Calculate the spectral flatness measure

$$SFM_x = \frac{\exp\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}\ln S_x(e^{j\omega})d\omega\right)}{\frac{1}{2\pi}\int_{-\pi}^{\pi}S_x(e^{j\omega})d\omega}$$

and $\sigma_e^2|_{\min}$ as predictor length N goes to infinity. (Hint: use a Riemann approximation of the integral—do *not* use the symbolic **int** command.) How does $\sigma_e^2|_{\min}$ compare to σ_v^2 ?

- (d) Calculate prediction coefficients and $\sigma_e^2|_{\min,N}$ for predictor lengths N = 3 and N = 20. (You may find the Matlab command toeplitz useful for construction of the autocorrelation matrix.)
- (e) From the diagram below, it can be seen that E(z) = B(z)(1-H(z))V(z) where $B(z) = \sum_{i=0}^{N_b} b_i z^{-i}$ and $H(z) = \sum_{i=1}^{N_h} h_i z^{-i}$. Using convolution, it is possible to calculate $\{q_i\}$, the impulse response of Q(z) = B(z)(1-H(z)), and hence $r_e(k)$ by the method of part (a).

Plot $r_e(k)$ and $S_e(e^{j\omega})$ for the two predictors. Is the prediction error white? How "flat" is the error spectrum? How could one quantify "flatness"?

(f) Using a M = 10000-length version of x(n) in Matlab and the two predictors designed in 1(c), compute the prediction error sequences e(n) and measure their variance. How do they compare to the theoretical $\sigma_e^2|_{\min,N}$?

2. <u>DPCM Structures:</u>

Here you will investigate the four PCM/DPCM structures discussed in the notes.

(a) Using x(n) from 1(d) and the length-3 predictor from 1(c), implement the coder/decoder in Fig. 1 and compute the mean-squared reconstruction error $\mathcal{E} = \frac{1}{M} \sum_{n=0}^{M-1} |y(n) - x(n)|^2$.

Figure 1: Prediction Error Transmission System.

(b) Repeat for the PCM system in Fig. 2. Assume uniform quantization with L = 32, and choose Δ to minimize \mathcal{E} based on the experiments you did in Homework 1.

Figure 2: PCM System.

(c) Repeat for the coder/decoder in Fig. 3 (but make sure to redesign Δ appropriately). Discuss how \mathcal{E} compares with $\operatorname{var}(\tilde{e}(n) - e(n))$.

Figure 3: Predictive Coding System.

(d) Repeat for the coder/decoder in Fig. 4 using the same quantizer as in (c). Discuss how \mathcal{E} compares with $\operatorname{var}(\tilde{e}(n) - e(n))$.

Figure 4: Differential-PCM System.

(e) Since \mathcal{E} was calculated using the same input signal in parts (a)-(d), a direct comparison of the 4 systems is possible. Discuss the advantages and disadvantages of each system.

3. Optimal Coding:

Now that you are having fun, it's time to investigate minimum bit rate versus SNR for coding of $\tilde{e}(n)$ and x(n).

(a) Using x(n) from 1(a), the structure in Fig. 4, and a predictor length of N = 20, calculate the SNR (= $10 \log_{10}(\sigma_x^2/\mathcal{E})$) for uniform quantizers with L = 2, 4, 8, 16, 32, 64, 128. Use quantization stepsize $\Delta = 2e_{\max}/L$ based on the table below, assuming $\sigma_e^2 \approx \sigma_e^2 \Big|_{\min,N}$.

L	2	4	8	16	32	64	128
$e_{\rm max}/\sigma_e$	1.6	2	2.3	2.7	3.1	3.4	3.7

- (b) For the same input and DPCM systems, calculate the entropy rate of $\tilde{e}(n)$. (You may assume that e(n) is zero-mean Gaussian and use **erfc** as in Homework 1. σ_e^2 can be obtained experimentally for each L.)
- (c) Using the results from (a) and (b), plot the bit rate anticipated from optimal entropy coding of $\tilde{e}(n)$ (see Fig. 5) versus SNR. Superimpose, on the same plot, the bit rate versus SNR curve for the optimal coder of x(n). Discuss.

Figure 5: Entropy-Encoded DPCM System.