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1 DPCM

1.1 Pulse Code Modulation

• PCM is the “standard” sampling method taught in introductory DSP courses. The input signal is

1. filtered to prevent aliasing,

2. discretized in time by a sampler, and

3. quantized in amplitude by a quantizer

before transmission (or storage). Finally, the received samples are interpolated in time and ampli-
tude to reconstruct an approximation of the input signal. Note that transmission may employ the
use of additional encoding and decoding, as with entropy codes.

PCM is the most widespread and well-understood digital coding system for reasons of simplicity,
though not efficiency (as we shall see).
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Figure 1: Standard PCM system.

1.2 Differential Pulse Code Modulation

• Many information signals, including audio, exhibit significant redundancy between successive sam-
ples. In these situations, it is advantageous to transmit only the difference between predicted and
true versions of the signal: with a “good” predictions, the quantizer input will have variance less
than the original signal, allowing a quantizer with smaller decision regions and hence higher SNR.
(See Fig. 4 for an example of such a structure.)

• Linear Prediction: There are various methods of prediction, but we focus on forward linear pre-

diction of order N , illustrated by Fig. 2 and described by the following equation, where x̂(n) is a
linear estimate of x(n) based on N previous versions of x(n):

x̂(n) =

N∑

i=1

hix(n− i). (1)

It will be convenient to collect the prediction coefficients into the vector h = (h1, h2, . . . , hN )t.

• Lossless Predictive Encoding: Consider first the system in Fig. 3. The system equations are

e(n) = x(n) − x̂(n)

y(n) = e(n) + ŷ(n).
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Figure 2: Linear Prediction.
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predictor

h
predictor

h

Figure 3: Lossless Predictive Data Transmission System.

In the z-domain (i.e., X(z) =
∑

n x(n)z−n and H(z) =
∑

i hiz
−i),

E(z) = X(z)− X̂(z) = X(z)
(
1−H(z)

)

Y (z) = E(z) + Ŷ (z) = E(z) + H(z)Y (z).

We call this transmission system lossless because, from above,

Y (z) =
E(z)

1−H(z)
= X(z).

Without quantization, however, the prediction error e(n) takes on a continuous range of values, and
so this scheme is not applicable to digital transmission.

• Quantized Predictive Encoding: Quantizing the prediction error in Fig. 3, we get the system of
Fig. 4. Here the equations are
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Figure 4: Quantized Predictive Coding System.

q(n) = ẽ(n)− e(n)

e(n) = x(n) − x̂(n)

y(n) = ẽ(n) + ŷ(n).

In the z-domain we find that

Ẽ(z) = X(z)
(
1−H(z)

)
+ Q(z)

Y (z) =
Ẽ(z)

1−H(z)
= X(z) +

Q(z)

1−H(z)
.
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Thus the reconstructed output is corrupted by a filtered version of the quantization error where

the filter
(
1 −H(z)

)
−1

is expected to amplify the quantization error; recall that Y (z) = E(z)
(
1−

H(z)
)
−1

where the goal of prediction was to make σ2
e < σ2

y. This problem results from the fact that
the quantization noise appears at the decoder’s predictor input but not at the encoder’s predictor
input. But we can avoid this. . .

• DPCM: Including quantization in the encoder’s prediction loop, we obtain the system in Fig. 5,
known as differential pulse code modulation. System equations are
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Figure 5: A Typical Differential PCM System.

q(n) = ẽ(n)− e(n)

e(n) = x(n)− ˆ̃x(n)

x̃(n) = ẽ(n) + ˆ̃x(n)

y(n) = ẽ(n) + ŷ(n).

In the z-domain we find that

Ẽ(z) = X(z)−H(z)X̃(z) + Q(z)

X̃(z) =
(
Q(z) + E(z)

)
+
(
X(z)− E(z)

)
= X(z) + Q(z)

Y (z) =
Ẽ(z)

1−H(z)

so that

Y (z) =
X(z)−H(z)

(
X(z) + Q(z)

)
+ Q(z)

1−H(z)
= X(z) + Q(z) = X̃(z).

Thus, the reconstructed output is corrupted only by the quantization error.

Another significant advantage to placing the quantizer inside the prediction loop is realized if
the predictor made self-adaptive (in the same spirit as the adaptive quantizers we studied). As
illustrated in Fig. 6, adaptation of the prediction coefficients can take place simulateously at the
encoder and decoder with no transmission of side-information (e.g. h(n))! This is a consequence of
the fact that both algorithms have access to identical signals.

1.3 Performance of DPCM

• As we noted earlier, the DPCM performance gain is a consequence of variance reduction obtained
through prediction. Here we derive the optimal predictor coefficients, prediction error variance,
and bit rate for the system in Fig. 4. This system is easier to analyze than DPCM systems with
quantizer in loop (e.g., Fig. 5) and it is said that the difference in prediction-error behavior is
negligible when R > 2 [2, p. 267].
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Figure 6: Adaptive DPCM System.

• Optimal Prediction Coefficients: First we find coefficients h minimizing prediction error variance:

min
h

E{e2(n)}.

Throughout, we assume that x(n) is a zero-mean stationary random process with autocorrelation

rx(k) := E{x(n)x(n− k)} = rx(−k).

A necessary condition for optimality is the following:

∀j ∈ {1, . . . , N}, 0 =
1

2

∂

∂hj

E{e2(n)}

= E

{

e(n)
∂e(n)

∂hj

}

= E {e(n)x(n− j)} ← The “Orthogonality Principle”

= E

{(

x(n)−

N∑

i=1

hix(n− i)

)

x(n− j)

}

= E {x(n)x(n − j)} −
N∑

i=1

hi E {x(n− i)x(n− j)}

= rx(j)−

N∑

i=1

hirx(j − i)

where we have used (1). We can rewrite this as a system of linear equations:








rx(1)
rx(2)

...
rx(N)








︸ ︷︷ ︸

rx

=








rx(0) rx(1) . . . rx(N−1)
rx(1) rx(0) . . . rx(N−2)

...
rx(N−1) rx(N−2) . . . rx(0)








︸ ︷︷ ︸

RN








h1

h2

...
hN








︸ ︷︷ ︸

h

which yields an expression for the optimal prediction coefficients:

h? = R
−1
N rx . (2)

• Error for Length-N Predictor: The definition x(n) :=
(
x(n), x(n−1), . . . , x(n−N)

)t
and (2) can
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be used to show that the minimum prediction error variance is

σ2
e

∣
∣
min,N

= E{e2(n)}

= E

{∥
∥
∥
∥
x

t(n)

(
1
−h?

)∥
∥
∥
∥

2
}

=
(

1 −h
t
?

)
E{x(n)xt(n)}

(
1
−h?

)

=
(

1 −h
t
?

)
(

rx(0) r
t
x

rx RN

)(
1
−h?

)

= rx(0)− 2ht
?rx + h

t
?RNh?

= rx(0)− r
t
xR

−1
N rx.

• Error for Infinite-Length Predictor: We now characterize σ2
e

∣
∣
min,N

as N →∞. Note that

(
rx(0) r

t
x

rx RN

)

︸ ︷︷ ︸

RN+1

(
1
−h?

)

=

(

σ2
e

∣
∣
min,N

0

)

Using Cramer’s rule,

1 =

∣
∣
∣
∣
∣

σ2
e

∣
∣
min,N

r
t
x

0 RN

∣
∣
∣
∣
∣

|RN+1|
= σ2

e

∣
∣
min,N

|RN |

|RN+1|
⇒ σ2

e

∣
∣
min,N

=
|RN+1|

|RN |
.

Aside 1.1 (Cramer’s Rule):
Given matrix equation Ay = b, where A = (a1,a2, . . . ,aN ) ∈ R

N×N ,

yk =

˛

˛a1, . . . ,ak−1, b,ak+1, . . . , aN

˛

˛

˛

˛A
˛

˛

where | · | denotes determinant.

A result from the theory of Toeplitz determinants [2] gives the final answer:

σ2
e

∣
∣
min

= lim
N→∞

|RN+1|

|RN |
= exp

(
1

2π

∫ π

−π

lnSx(ejω)dω

)

(3)

where Sx(ejω) is the power spectral density of the WSS random process x(n):

Sx(ejω) :=

∞∑

n=−∞

rx(n)e−jωn.

(Note that, because rx(n) is conjugate symmetric for stationary x(n), Sx(ejω) will always be non-
negative and real.)

• ARMA Source Model: If the random process x(n) can be modelled as a general linear process, i.e.,
white noise v(n) driving a causal LTI system B(z):

x(n) = v(n) +

∞∑

k=1

bkv(n− k) with
∑

k

|bk|
2 <∞,
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then it can be shown that

σ2
v = exp

(
1

2π

∫ π

−π

lnSx(ejω)dω

)

.

Thus the MSE-optimal prediction error variance equals that of the driving noise v(n) when N =∞.

• Prediction Error Whiteness: We can also demonstrate that the MSE-optimal prediction error is
white when N =∞. This is a simple fact of the orthogonality principle seen earlier:

0 = E{e(n)x(n− k)}, k = 1, 2, . . . .

The prediction error has autocorrelation

E{e(n)e(n− k)} = E

{

e(n)

(

x(n− k) +
∞∑

i=1

hix(n− k − i)

)}

= E{e(n)x(n− k)}
︸ ︷︷ ︸

→0 for k>0

+

∞∑

i=1

hi E{e(n)x(n− k − i)}
︸ ︷︷ ︸

→0

= σ2
e

∣
∣
min

δ(k).

• AR Source Model: When the input can be modelled as an autoregressive (AR) process of order N :

X(z) =
1

1 + a1z−1 + a2z−2 + · · ·+ aNz−N
V (z),

then MSE-optimal results (i.e., σ2
e = σ2

e

∣
∣
min

and whitening) may be obtained with a forward pre-

dictor of order N . Specifically, the prediction coefficients hi can be chosen as hi = ai and so the
prediction error E(z) becomes

E(z) =
(
1−H(z)

)
X(z) =

1 + a1z
−1 + a2z

−2 + · · ·+ aNz−N

1 + a1z−1 + a2z−2 + · · ·+ aNz−N
V (z) = V (z),

Thus σ2
e = σ2

v = σ2
e

∣
∣
min

, and white V (z) implies white E(z).

• Efficiency Gain over PCM: Prediction reduces the variance at the quantizer input without changing
the variance of the reconstructed signal.

– By keeping the number of quantization levels fixed, could reduce quantization step width and
obtain lower quantization error than PCM at the same bit rate.

– By keeping the decision levels fixed, could reduce the number of quantization levels and obtain
a lower bit rate than PCM at the same quantization error level.

Assuming that x(n) and e(n) are distributed similarly, use of the same style of quantizer on DPCM
vs. PCM systems yields

SNRDPCM = SNRPCM + 10 log10

σ2
x

σ2
e

.

1.4 Connections to Rate-Distortion Theory

• The rate-distortion function R(D) specifies the minimum average rate R required to transmit the
source process at a mean distortion of D, while the distortion-rate function D(R) specifies the
minimum mean distortion D resulting from transmission of the source at average rate R. These
bounds are theoretical in the sense that coding techniques which attain these minimum rates or
distortions are in general unknown and thought to be infinitely complex as well as require infinite
memory. Still, these bounds form a reference against which any specific coding system can be
compared.
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For a continuous-amplitude white (i.e., “memoryless”) Gaussian source x(n) [1, 2],

R(D) =

{
1
2

log2
σ2

x

D
0 ≤ D ≤ σ2

x

0 D ≥ σ2
x

D(R) = 2−2Rσ2
x.

The sources we are interested in, however, are non-white. It turns out that when distortion D is
“small,” non-white Gaussian x(n) have the following distortion-rate function [2, p. 644]:

D(R) = 2−2R exp

(
1

2π

∫ π

−π

lnSx(ejω)dω

)

= 2−2Rσ2
x




exp

(
1
2π

∫ π

−π
lnSx(ejω)dω

)

1
2π

∫ π

−π
Sx(ejω)dω





︸ ︷︷ ︸

spectral flatness measure

.

Note the ratio of geometric to arithmetic PSD means, called the spectral flatness measure. Thus
optimal coding of x(n) yields

SNR(R) = 10 log10

(
σ2

x

D(R)

)

≈ 6.02R− 10 log10(SFMx) . (4)

To summarize, (4) gives the best possible SNR for any arbitrarily-complex coding system that
transmits/stores information at an average rate of R bits/sample.

• Let’s compare the SNR-versus-rate performance acheivable by DPCM to the optimal given by (4).
The structure we consider is shown in Fig. 7, where quantized DPCM outputs ẽ(n) are coded into
binary bits using an entropy coder. Assuming that ẽ(n) is white (which is a good assumption for
well-designed predictors), optimal entropy coding/decoding is able to transmit and recover ẽ(n) at
R = Hẽ bits/sample without any distortion. Hẽ is the entropy of ẽ(n), for which we derived the
following expression assuming large-L uniform quantizer:

Hẽ = he −
1

2
log2

(
12var(e(n)− ẽ(n))

)
.

Since var(e(n)− ẽ(n)) = σ2
r in DPCM, Hẽ can be rewritten:

Hẽ = he −
1

2
log2

(
12σ2

r

)
.

If e(n) is Gaussian, it can be shown that the differential entropy he takes on the value

he =
1

2
log2

(
2πeσ2

e

)
,

so that

Hẽ =
1

2
log2

(πeσ2
e

6σ2
r

)
.

Using R = Hẽ and rearranging the previous expression, we find

σ2
r =

πe

6
2−2Rσ2

e .

With the optimal infinite length predictor, σ2
e equals σ2

e

∣
∣
min

given by (3). Plugging (3) into the

previous expression and writing the result in terms of the spectral flatness measure,

σ2
r =

πe

6
2−2Rσ2

x SFMx.
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Translating into SNR, we obtain

SNR = 10 log10

(
σ2

x

σ2
r

)

≈ 6.02R− 1.53− 10 log10 SFMx [dB]. (5)

To summarize, a DPCM system using a MSE-optimal infinite-length predictor and optimal entropy
coding of ẽ(n) could operate at an average of R bits/sample with the SNR in (5).

++

+

−
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x̃(n)
ˆ̃x(n)

y(n)
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e(n) ẽ(n)ẽ(n)

predictor
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h

entropy
encoder

entropy
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Figure 7: Entropy-Encoded DPCM System.

• Comparing (4) and (5), we see that DPCM incurs a 1.5 dB penalty in SNR when compared to
the optimal. From our previous discussion on optimal quantization, we recognize that this 1.5 dB
penalty comes from the fact that the quantizer in the DPCM system is memoryless. (Note that the
DPCM quantizer must be memoryless since the predictor input must not be delayed.)

• Though we have identified a 1.5 dB DPCM penalty with respect to optimal, a key point to keep in
mind is that the design of near-optimal coders for non-white signals is extremely difficult. When
the signal statistics are rapidly changing, such a design task becomes nearly impossible.

Though still non-trivial to design, near-optimal entropy coders for white signals exist and are widely
used in practice. Thus, DPCM can be thought of as a way of pre-processing a colored signal that
makes near-optimal coding possible. From this viewpoint, 1.5 dB might not be considered a high
price to pay.
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