Phil Schniter

ECE-501

Phil Schniter

January 16, 2008

Introduction:

Goal: Transmit a message from one location to another.

When message is...

continuous waveform \rightarrow analog comm (e.g., FM radio), sequence of numbers \rightarrow digital comm (e.g., mp3 file), though the sequence of numbers might represent a continuous waveform (as in the case of mp3 audio).

Typical communication media:

twisted pair wire	(e.g., telephone _{A})					
coaxial cable	(e.g., $TV_{A,D}$, data _D)					
fiber optic cable	(e.g., ethernet _D)					
EM waves	(e.g., cellular phones _{A,D} , WiFi _D , $TV_{A,D}$)					
water waves	(e.g., underwater network _{A,D})					
power lines $_{A,D}$						
compact $disc_D$						
hard drive $_D$						
magnetic tape $_{A,D}$						
where $_A$ = analog and $_D$ = digital.						

Note that, whether the message signal is discrete-time or continuous-time, the transmitted signal is continuous-time!

Analog Communication:

• Perfect recovery is impossible in the presence of noise!

Digital Communication:

- A digital message is converted to an analog message coding and pulse-shaping, and then transmitted using analog modulation. To recover the message, the received signal is demodulated, sampled, and digitally processed.
- Perfect recovery is possible even in the presence of noise!

Phil Schniter

January 16, 2008

ECE-501

Phil Schniter

January 16, 2008

Preview of Comm System Components:

Modulator:

• Translates "baseband" analog signal to "passband":

where f_c is the "carrier frequency."

- There are two principal motivations for doing this:
 - 1. Often we want to communicate several signals simultaneously (e.g., TV, radio, voice). It's difficult or impossible to do this if they overlap in frequency!
 - 2. Wireless EM transmission/reception is much easier at higher frequencies, since need antenna length $> \frac{\lambda}{10}$.

$\left(\lambda = \frac{c}{f_c}\right)$	is	wavelength	and	c=3e8	m/s	speed	of	light.))
--	----	------------	-----	-------	-----	-------	----	---------	---

system	transmission band	$\lambda/10$
VHF (TV)	30–300 MHz	1–0.1 m
UHF (TV)	0.3–3 GHz	10–1 cm
cellular	824–960 MHz	3 cm
WiFi	2.4 GHz	1 cm

Notice that practical antenna length determines where different signal types can be transmitted.

Coder/Mapper:

- Coder transforms sequence of message bits into an error-resiliant sequence of coded bits.
- Mapper transforms coded bits into discrete "symbols." Ex: If the "symbol alphabet" is $\{-3, -1, 1, 3\}$ and the bits symbol 00 3 , then ASCII text would symbol mapping is 01 -1 10 -3 11 symbol sequence letter ASCII code 00 01 01 10 01 10 00 10 1 b be transmitted via 01 10 00 11 с -1 -3 3 01 10 01 00 d -1 -1 -3

Phil Schniter

January 16, 2008

Preliminaries (Ch.2):

Fourier Transform (FT):

Definition:

$$W(f) = \int_{-\infty}^{\infty} w(t)e^{-j2\pi ft}dt = \mathcal{F}\{w(t)\}$$
$$w(t) = \int_{-\infty}^{\infty} W(f)e^{j2\pi ft}df = \mathcal{F}^{-1}\{W(f)\}.$$

Properties:

- Linearity: $\mathcal{F}\{c_1w_1(t) + c_2w_2(t)\} = c_1W_1(f) + c_2W_2(f).$
- Real-valued $w(t) \Rightarrow \begin{cases} \text{conjugate symmetric } W(f) \\ |W(f)| \text{ symmetric around } f = 0. \end{cases}$

<u>"Bandwidth"</u>:

- Converts symbol sequence into a continuous waveform.
- In linear modulation schemes, the time-*n* symbol *s*[*n*] scales a *nT*-delayed version of pulse *p*(*t*):

$$y(t) = \sum_{n} s[n]p(t - nT)$$
 "baseband signal"
 $T =$ "symbol period"

Ex: Say symbol sequence is [1, 3, -1, 1, 3]. Then

Phil Schniter

January 16, 2008

ECE-501

Phil Schniter

January 16, 2008

Dirac Delta (or "continuous impulse") $\delta(\cdot)$:

An infinitely tall and thin waveform with unit area:

that's often used to "kick" a system and see how it responds.

Key properties:

- 1. Sifting: $\int_{-\infty}^{\infty} w(t)\delta(t-q)dt = w(q).$
- 2. Time-domain impulse $\delta(t)$ has a flat spectrum:

$$\mathcal{F}\{\delta(t)\} = \int_{-\infty}^{\infty} \delta(t) e^{-j2\pi f t} dt = 1 \text{ (for all } f\text{)}$$

3. Freq-domain impulse $\delta(f)$ corresponds to a DC waveform:

$$\mathcal{F}^{-1}\{\delta(f)\} = \int_{-\infty}^{\infty} \delta(f) e^{j2\pi ft} df = 1 \text{ (for all } t\text{)}.$$

Frequency-Domain Representation of Sinusoids:

Notice from the sifting property that

$$\mathcal{F}^{-1}\{\delta(f-f_o)\} = \int_{-\infty}^{\infty} \delta(f-f_o)e^{j2\pi ft}df = e^{j2\pi f_o t}.$$

Thus, Euler's equations

$$\cos(2\pi f_o t) = \frac{1}{2}e^{j2\pi f_o t} + \frac{1}{2}e^{-j2\pi f_o t}$$
$$\sin(2\pi f_o t) = \frac{1}{2j}e^{j2\pi f_o t} - \frac{1}{2j}e^{-j2\pi f_o t}$$

and the Fourier transform pair $e^{j2\pi f_o t} \leftrightarrow \delta(f-f_o)$ imply that

$$\mathcal{F}\{\cos(2\pi f_o t)\} = \frac{1}{2}\delta(f - f_o) + \frac{1}{2}\delta(f + f_o)$$
$$\mathcal{F}\{\sin(2\pi f_o t)\} = \frac{1}{2j}\delta(f - f_o) - \frac{1}{2j}\delta(f + f_o)$$

Often we draw this as

Phil Schniter

January 16, 2008

ECE-501

Frequency Domain via MATLAB:

Fourier transform requires evaluation of an integral. What do we do if we can't define/solve the integral?

- 1. Generate (rate- $\frac{1}{T_e}$) sampled signal in MATLAB.
- Plot magnitude of Discrete Fourier Transform (DFT) using plottf.m (from course webpage).

Square-wave example:

Noise-wave example:

t_max = 1; Ts = 1/1000; x = randn(1,t_max/Ts); plottf(x,Ts);

Linear Time-Invariant (LTI) Systems:

An LTI system can be described by either its "impulse response" h(t) or its "frequency response" $H(f) = \mathcal{F}\{h(t)\}$.

Input/output relationships:

 $\bullet\,$ Time-domain: Convolution with impulse response h(t)

$$x(t) \rightarrow h(t) \rightarrow y(t) \qquad y(t) = h(t) * x(t) = \int_{-\infty}^{\infty} h(t-\tau)x(\tau)d\tau$$

• Freq-domain: Multiplication with freq response H(f)

 $X(f) \rightarrow H(f) \rightarrow Y(f) \qquad Y(f) = H(f)X(f)$

Linear Filtering:

Freq-domain illustration of LPF, BPF, and HPF:

Phil Schniter

January 16, 2008

ECE-501

In MATLAB, generate $\frac{1}{T_s}$ -sampled LPF impulse response via h = firls(Lf, [0,fp,fs,1], [G,G,0,0])/Ts;

where...

$$\begin{array}{c} \mathsf{G} & \mathsf{Lf+1} = \mathsf{impulse response length} \\ \mathsf{G} & \overbrace{1}^{\mathsf{f}} & \{\mathsf{0}, \mathsf{fp}\}, \{\mathsf{fs}, \mathsf{1}\} = \mathit{normalized} \text{ freq pairs} \\ \mathsf{O} & \overbrace{0 \ \mathsf{fp} \ \mathsf{fs}} & \mathsf{1}^{\mathsf{fs}} & \overbrace{1}^{\mathsf{f}} & \{\mathsf{G}, \mathsf{G}\}, \{\mathsf{0}, \mathsf{0}\} = \mathsf{corresp. magnitude pairs} \end{array}$$

The commands firpm and fir2 have the same interface, but yield slightly different results (often worse for our apps).

In MATLAB, perform filtering on $\frac{1}{T_s}$ -sampled signal x via

Important: The routines firls,firpm,fir2 generate *causal* linear-phase filters with group delay $= \frac{Lf}{2}$ samples. Thus, the filtered output y will be delayed by $\frac{Lf}{2}$ samples relative to x.

Lowpass Filters:

Ideal non-causal LPF (using $\operatorname{sinc}(x) := \frac{\sin(\pi x)}{\pi x}$):

Ideal LPF with group-delay t_o :

A causal linear-phase LPF with group-delay t_o :

but MATLAB can give better causal linear-phase LPFs...