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Error Analysis of Digital Comm (Ch.6,10):

When the channel is trivial and noiseless and the pulses satisfy

the Nyquist criterion (i.e., g[k] ∗ q[k] = δ[k]), the digital

comm system will work perfectly, yielding y[n] = a[n].

a[n] ↑P g[k]
m̃[k]

h̃[k]

w̃[k]

ṽ[k] y↑[k]
y[n]q[k] ↓P+

In practice, however,

• the pulses g[k] and q[k] will be truncated to finite length,

• the channel will not be trivial (i.e., h̃[k] $= δ[k]), and

• the channel will not be noiseless (i.e., w̃[k] $= 0),

leading to y[n] $= a[n], in which case we must infer the value

of a[n] from the received samples {y[m]}∞m=−∞. For now, we

consider using only the single sample y[n] to infer a[n].

Key question: What are the mechanisms by which errors are

made?

To better understand error behavior, we can plot the “eye

diagram” or the “constellation diagram” and calculate the

symbol error rate (SER).
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Eye Diagrams:

Usually used when a[n] ∈ R, the eye diagram is a plot which

superimposes T -second segments of Re{y(t)} over the time

intervals t ∈ [nT − T
2 , nT + T

2 ) for many integers n.

Re{y(t)}

t

TT

. . .

. . .

eye
diagram

In MATLAB, the eye diagram can be made by superimposing

P -sample segments of Re{y↑[k]} corresponding to intervals

k ∈ {nP − P
2 , . . . , nP + P−1

2 } for many n. (Usually P ≥ 8.)

.

When the eye is
“open,” decisions

will be reliable:

As the eye “closes,”
decisions get more

unreliable:

If a[n] ∈ C, eye diagrams can be plotted for both the “I” and

“Q” channels using Re{y(t)} and Im{y(t)}, respectively.
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MATLAB for digital mod/demod with eye diagram:
% design SRRC

P = 16; % oversampling factor

alpha = 0.5; % SRRC rolloff param

D = 2; % truncation to [-DT,DT]

g = srrc(D,alpha,P); % SRRC pulse

Ng = length(g);

% generate symbols

N = 100; % # symbols

M = 4; % alphabet size

sig2a = 1; % symbol variance

a = pam(N,M,sig2a); % symbol sequence

% pulse-amplitude modulate

a_up = zeros(1,N*P);

a_up(1:P:end) = a; % upsampled symbols

m = conv(a_up,g); % PAM

% matched-filter demodulate

y_up = conv(m,g); % use SRRC again

% remove causal filtering delay

left = -P/2; % left edge of eye diagram

k = left+[1:P*N]; % desired time indices

dly = (Ng-1)/2+(Ng-1)/2;% delay due to pulses

y_up = y_up(k+dly); % remove delay

y = y_up([1-left:P:P*N]);% downsample

% plot received signal

figure(1)

plot(left/P+[0:P*N-1]/P,y_up,’r’,[0:N-1],y,’.’);

axis(’tight’)

title([’SRRC (\alpha=’,num2str(alpha),...

’) truncated to \pm’,num2str(D),’T’])

xlabel([’symbol index’])

% plot eye diagram

figure(2)

Y_up = reshape(y_up,P,N); % extract segments

plot(left/P+[0:P-1]/P,Y_up) % superimpose them

title([’SRRC (\alpha=’,num2str(alpha),...

’) truncated to \pm’,num2str(D),’T’])

xlabel([’relative symbol index’])
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Constellation Diagrams:

The constellation diagram is a plot of Im{y[n]} vs. Re{y[n]}
for many integers n. When the comm system is working well,

the points cluster around the symbol alphabet values:
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Recall that y[n] ∈ C due to the complex-baseband channel

model, regardless of whether a[n] ∈ R or a[n] ∈ C.

Sometimes it is instructive

to superimpose a plot of

Im{y↑[n]} vs. Re{y↑[n]},
which approximates the tra-

jectory of y(t) in the com-

plex plane:
!1.5 !1 !0.5 0 0.5 1 1.5

!1

!0.5

0

0.5

1

I

Q

SRRC (!=0.5) truncated to ±2T

57



ECE-501 Phil Schniter March 1, 2008

MATLAB for digital mod/demod with constellation diagram:
% design SRRC

P = 8; % oversampling factor

alpha = 0.5; % SRRC rolloff param

D = 2; % truncation to [-DT,DT]

g = srrc(D,alpha,P); % SRRC pulse

Ng = length(g);

% generate symbols

N = 100; % # symbols

M = 4; % (sqrt) alphabet size

sig2a = 1; % symbol variance

a = qam(N,M,sig2a); % symbol sequence

% pulse-amplitude modulate

a_up = zeros(1,N*P);

a_up(1:P:end) = a; % upsampled symbols

m = conv(a_up,g); % PAM

% matched-filter demodulate

y_up = conv(m,g); % use SRRC again

% remove causal filtering delay

k = [1:P*N]; % desired time indices

dly = (Ng-1)/2+(Ng-1)/2;% delay due to pulses

y_up = y_up(k+dly); % remove delay

y = y_up(1:P:end); % downsample

% plot received signal

figure(1)

plot3([0:P*N-1]/P,real(y_up),imag(y_up),...

’r’,[0:N-1],real(y),imag(y),’.’);

xlabel(’symbol index’);

ylabel(’I’); zlabel(’Q’);

view(20,30); % to see full trajectory

%also try view(0,90), view(0,0), view(90,0)

% plot constellation diagram

figure(2)

plot(real(y_up),imag(y_up),’y’,real(y),imag(y),’.’);

xlabel(’I’); ylabel(’Q’);

title([’SRRC (\alpha=’,num2str(alpha),...

’) truncated to \pm’,num2str(D),’T’])

axis(’equal’);
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Popular Symbol Alphabets:

QAM : “quadrature amplitude modulation”
PAM : “pulse amplitude modulation”
PSK : “phase shift keying”

ImImIm

ReReRe

16-QAM 8-PAM 8-PSK

∆

∆

∆
∆

Note that
“QPSK” = 4-QAM = 4-PSK
“BPSK” = 2-PAM = 2-PSK

When the alphabet entries are spaced by ∆ and picked with

equal probability, the symbol variance σ2
a = E{|a[n]|2} obeys:

alphabet M2-QAM M -PAM M -PSK
σ2

a
∆2

6 (M2 − 1) ∆2

12 (M2 − 1) ∆2

4 sin2(π/M)

59



ECE-501 Phil Schniter March 1, 2008

Decision Regions:

A reasonable way to infer the transmitted symbol a[n] from

the received sample y[n] is to decide that a[n] was the

alphabet element nearest to y[n].

Nearest-element decision making is equivalent to using

decision regions whose boundaries are equidistant from the

two nearest alphabet elements:

Im

ImIm

Im

Re

ReRe

Re

16-QAM 4-PAM

8-PSK ???

When a[n] = a, the symbol error rate (SER) equals the

probability that y[n] lies outside the decision region

corresponding to alphabet member a.
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Writing y[n] = a[n] + e[n], we represent the cumulative effect

of noise and ISI by the error e[n]. Usually we model e[n] as a

Gaussian random variable with mean 0 and variance σ2
e .

Symbol Error Rate (SER) for M -PAM:

Let’s first consider an M -PAM alphabet, where a[n] ∈ R.

Since the decision regions show that Im{y[n]} is not useful,

we’ll consider only the real parts of y[n] and e[n].

When a[n] = a, we have y[n] = a + e[n], implying that y[n] is

Gaussian with mean a and variance σ2
e , abbreviated as

“N (a, σ2
e)”. This is illustrated below for the case of 4-PAM:

y

σe

a a+ ∆
2a−∆

2

N (a, σ2
e)

Formally, we say that py[n]|a[n](y|a), the probability density

function (pdf) of y[n] conditioned on a[n] = a, obeys

py[n]|a[n](y|a) =
1

√

2πσ2
e

exp

(

−(y − a)2

2σ2
e

)

︸ ︷︷ ︸

N (a,σ2
e)

.
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Basically, py[n]|a[n](y|a) tells us how likely it is that y[n] = y

given that s[n] = a.

Consider first the case where a is an “interior” (not an

“edge”) element of the symbol alphabet. Given that a[n] = a,

we make an error when y[n] < a − ∆
2 or when y[n] > a + ∆

2 .

To find the probability of the latter error event, i.e.,

Pr
{

y[n] > a + ∆
2

∣
∣ a[n] = a

}

,

we integrate py[n]|a[n](y|a) over y ∈ (a + ∆
2 ,∞):

∫ ∞

a+∆

2

py[n]|a[n](y|a)
︸ ︷︷ ︸

N (a,σ2
e)

dy =

∫ ∞

a+∆

2

1
√

2πσ2
e

exp

(

−(y − a)2

2σ2
e

)

dy.

The integral represents the shaded area below:

y
a a+ ∆

2a−∆
2

py[n]|a[n](y|a)
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This integral is often solved via
∫ ∞

x

1√
2πσ2

exp

(

−(y − µ)2

2σ2

)

︸ ︷︷ ︸

N (µ,σ2)

dy = Q

(
x − µ

σ

)

,

using the “Q function”:

!3 !2 !1 0 1 2 3
0
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x

Q
(x

)

While the Q function is not represented in MATLAB, it can

be calculated using the “complementary error function” erfc:

Q(x) =
1

2
erfc

(
x√
2

)

In any case, the latter error event occurs with probability

Pr
{

y[n] > a + ∆
2

∣
∣ a[n] = a

}

= Q

(

(a + ∆
2 ) − a

σe

)

= Q

(
∆

2σe

)

.
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By symmetry, the former error event probability is also

Pr
{

y[n] < a − ∆
2

∣
∣ a[n] = a

}

= Q

(
∆

2σe

)

.

Since these two events are disjoint, the probability of making

a decision error on an interior symbol equals their sum:

Q

(
∆

2σe

)

+ Q

(
∆

2σe

)

= 2Q

(
∆

2σe

)

.

For edge symbols, we experience half the decision error

probability, since there is only one decision boundary to cross.

Finally, we average over the conditional error probabilities:

Pr{error} =
∑

a∈ alphabet

Pr{error|a[n] = a}Pr{a[n] = a}
︸ ︷︷ ︸

=1/M for all a

= Q

(
∆

2σe

)

· 2

M
+ 2Q

(
∆

2σe

)

· M−2

M

= 2

(
M−1

M

)

Q

(
∆

2σe

)

,

Using σ2
a = ∆2

12 (M2 − 1), we can finally write

SERM -PAM = 2

(
M−1

M

)

Q

(√

3

(M2 − 1)

σ2
a

σ2
e

)

.
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Symbol Error Rate (SER) for M2-QAM:

With QAM, we have complex-valued y[n], a[n], e[n]. We’ll

assume that Re{e[n]} and Im{e[n]} are uncorrelated and

equal variance. To calculate SER, we can re-use the PAM

approach with a few modifications:

1. integration is done on the complex plane,

2. σ2
e -variance e[n] ⇒ σ2

e

2 -variance Re{e[n]} & Im{e[n]},

3. M2-QAM has 4 corner points, 4(M − 2) edge points, and

M2 − 4M + 4 interior points,

4. calculate Pr{error|a[n] = a} via 1−Pr{correct|a[n] = a},
since the regions of integration are simpler:

Re Re

ImIm ImIm

aa

Pr{error|a[n] = a}: Pr{correct|a[n] = a}:

After a bit of algebra, we find

SERM2-QAM = 1 −
[

1 − 2

(
M − 1

M

)

Q

(√

3

(M2 − 1)

σ2
a

σ2
e

)]2

.
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Bit Error Rate (BER) and Gray Coding:

With an M -ary alphabet, there are log2 M bits per symbol, so

a 1 symbol error could cause up to log2 M bit errors.

Gray coding is a clever way of mapping bits to symbols so

that neighboring symbols differ by only a single bit. Since the

vast majority of errors occur when y[n] falls into a neighboring

decision region, Gray coding yields BER ≈ SER.

4-PAM: 16-QAM:

ReRe

ImImImIm

0000 0100 1100 1000

0001 0101 1101 1001

0011 0111 1111 1011

0010 0110 1110 1010

00 01 11 10
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