MMSE Equalizer Design

Phil Schniter

March 6, 2008

For a trivial channel (i.e., $\tilde{h}[k]=\delta[k]$), we know that the use of square-root raisedcosine (SRRC) pulses at transmitter and receiver suppresses inter-symbol interference (ISI) and maximizes the received signal-to-noise ratio (SNR) in the presence of white noise $\{\tilde{w}[k]\}$. With a non-trivial channel, however, we need to re-visit the design of the receiver pulse $\{q[k]\}$, which is called an "equalizer" when it tries to compensate for the channel.

Here we design the minimum mean-squared error (MMSE) equalizer coefficients $\{q[k]\}$ assuming that the input symbols $\{a[n]\}$ and the noise $\{\tilde{w}[k]\}$ are white random sequences that are uncorrelated with each other. This means that

$$
\begin{align*}
\mathrm{E}\left\{a[m] a^{*}[n]\right\} & =\sigma_{a}^{2} \delta[m-n] \tag{1}\\
\mathrm{E}\left\{\tilde{w}[k] \tilde{w}^{*}[l]\right\} & =\sigma_{w}^{2} \delta[k-l] \tag{2}\\
\mathrm{E}\left\{a[m] \tilde{w}^{*}[l]\right\} & =0 \tag{3}
\end{align*}
$$

for some positive variances σ_{a}^{2} and σ_{w}^{2}. For practical implementation, we will consider a causal equalizer with length N_{q}, so that $q[k]=0$ for $k<0$ and $k \geq N_{q}$. To simplify the derivation, we combine the transmitted pulse $g[k]$ and the complex-baseband channel $\tilde{h}[k]$ into the "effective channel"

$$
h[k]:=g[k] * \tilde{h}[k]
$$

and assume that this effective channel is causal with finite length N_{h}. Throughout, we assume that the effective channel coefficients $\{h[k]\}$, as well as the variances σ_{a}^{2} and σ_{w}^{2}, are known. Learning these quantities is a separate (and often challenging) problem.

Notice that, because the effective channel is causal and length N_{h}, it can delay the upsampled input signal $a_{\uparrow}[k]$ by between 0 and $N_{h}-1$ samples. Since it is difficult to compensate for this delay with a causal equalizer, we will allow for the presence of end-to-end system delay. Thus, our goal is to make $y[m] \approx a[m-\Delta]$ for some integer $\Delta \geq 0$. Throughout the design, we assume that Δ has been chosen for us, although eventually we shall see how to optimize Δ.

Recall that if $y[m]=a[m-\Delta]$, then we will be able to make perfect decisions on the symbols $a[m]$ from the output sequence $y[m]$. However, we would never expect a perfect output in the presence of noise. Thus, we take as our objective the minimization of the error signal

$$
e[m]:=y[m]-a[m-\Delta] .
$$

In particular, we minimize the mean squared error (MSE)

$$
\mathcal{E}:=\mathrm{E}\left\{|e[m]|^{2}\right\} .
$$

We saw earlier that, if $e[m]$ can be modelled as a zero-mean Gaussian random variable (with variance $\sigma_{e}^{2}=\mathcal{E}$), then the symbol error rate (SER) decreases as $\mathcal{E} / \sigma_{a}^{2}$ decreases. Thus, there is good reason to minimize \mathcal{E}.

Our eventual goal is to derive an expression for the MSE \mathcal{E} from which the equalizer coefficients can be optimized. But first we notice that, due to the stationary of $\{a[m]\}$ and $\{\tilde{w}[k]\}$ (i.e., the time-invariance of their statistics) and the LTI nature of our filters, the statistics of $\{e[m]\}$ will also be time invariant, allowing us to write $\mathcal{E}=\mathrm{E}\left\{|e[0]|^{2}\right\}$. This allows us to focus on $e[0]$ instead of $e[m]$, which simplifies the development.

The next step is then to find an expression for $e[0]$. From the block diagram,

$$
\begin{align*}
e[0] & =y[0]-a[-\Delta] \tag{4}\\
& =\sum_{l=0}^{N_{q}-1} q[l] \tilde{v}[-l]-a[-\Delta] \tag{5}\\
\tilde{v}[k] & =\tilde{w}[k]+\sum_{l=-\infty}^{\infty} a_{\uparrow}[l] h[k-l] \tag{6}\\
& =\tilde{w}[k]+\sum_{n=-\infty}^{\infty} a[n] h[k-n P], \tag{7}
\end{align*}
$$

where in (7) we used the fact that $a_{\uparrow}[l]=0$ when l is not a multiple of P and that $a_{\uparrow}[n P]=a[n]$. Though (7) is written with an infinite summation, it turns out that most values of n will not contribute. Due to the causality and length- N_{h} of $h[n]$, the values of n which lead to contributions to $\tilde{v}[k]$ ensure that

$$
\begin{align*}
& 0 \leq k-n P \tag{8}\\
& \Leftrightarrow \quad \frac{k}{P} \geq n N_{h}-1 \text { for at least one } k \in\left\{0,-1, \ldots,-N_{q}+1\right\} \\
& \Leftrightarrow \quad 0 \geq-\underbrace{\frac{N_{h}-1-k}{P}} \text { for at least one } k \in\left\{0,-1, \ldots,-N_{q}-1\right\}(9) \tag{10}\\
&:=N_{a}-1
\end{align*}
$$

where N_{a} denotes the number of contributing symbols. In other words,

$$
\begin{equation*}
\tilde{v}[k]=\tilde{w}[k]+\sum_{n=1-N_{a}}^{0} a[n] h[k-n P] . \tag{11}
\end{equation*}
$$

Next we use a vector formulation to simplify the development. We start by rewriting (5) as

$$
e[0]=\underbrace{\left[\begin{array}{llll}
q[0] & q[1] & \cdots & q\left[N_{q}-1\right]
\end{array}\right]}_{:=\underline{q}^{T}}\left[\begin{array}{c}
\tilde{v}[0] \tag{12}\\
\tilde{v}[-1] \\
\vdots \\
\tilde{v}\left[1-N_{q}\right]
\end{array}\right]-a[-\Delta],
$$

where, for $l \in\left\{0, \ldots, N_{q}-1\right\}$,

$$
\tilde{v}[-l]=\tilde{w}[-l]+\underbrace{\left[\begin{array}{llll}
h[-l] & h[-l+P] & \cdots & h\left[-l+\left(N_{a}-1\right) P\right]
\end{array}\right]}_{:=\underline{h}_{-l}^{T}} \underbrace{\left[\begin{array}{c}
a[0] \tag{13}\\
a[-1] \\
\vdots \\
a\left[1-N_{a}\right]
\end{array}\right]}_{:=\underline{a}}
$$

so that

$$
\left[\begin{array}{c}
\tilde{v}[0] \tag{14}\\
\tilde{v}[-1] \\
\vdots \\
\tilde{v}\left[1-N_{q}\right]
\end{array}\right]=\underbrace{\left[\begin{array}{c}
\tilde{w}[0] \\
\tilde{w}[-1] \\
\vdots \\
\tilde{w}\left[1-N_{q}\right]
\end{array}\right]}_{:=\underline{w}}+\underbrace{\left[\begin{array}{c}
\underline{h}_{0}^{T} \\
\underline{h}_{-1}^{T} \\
\vdots \\
\underline{h}_{1-N_{q}}^{T}
\end{array}\right]}_{:=\underline{H}} \underline{a} .
$$

In (14), the row vectors $\left\{\underline{h}_{-l}^{T}\right\}_{l=0}^{N_{q}-1}$ were combined to form the $N_{q} \times N_{a}$ matrix \underline{H}. Throughout, we use underlined lower-case letters to represent column vectors, and underlined upper-case letters to represent matrices. Plugging (14) into (12), we get

$$
\begin{equation*}
e[0]=\underline{q}^{T}(\underline{w}+\underline{H a})-a[-\Delta] . \tag{15}
\end{equation*}
$$

Defining $\underline{\delta}_{\Delta}$ as the column vector with a 1 in the $\Delta^{\text {th }}$ place ${ }^{1}$ and 0 's elsewhere, we can write $\underline{\delta}_{\Delta}^{T} \underline{a}=a[-\Delta]$, which yields the final expression for the time- 0 error:

$$
\begin{align*}
e[0] & =\underline{q}^{T}(\underline{w}+\underline{H a})-\underline{\delta}_{\Delta}^{T} \underline{a} \tag{16}\\
& =\underline{q}^{T} \underline{w}+\left(\underline{q}^{T} \underline{H}-\underline{\delta}_{\Delta}^{T}\right) \underline{a} . \tag{17}
\end{align*}
$$

Next, we derive an expression for the $\operatorname{MSE} \mathcal{E}$. Notice that

$$
\begin{align*}
\mathcal{E} & =\mathrm{E}\left\{|e[0]|^{2}\right\}=\mathrm{E}\left\{e[0] e^{*}[0]\right\} \tag{18}\\
& =\mathrm{E}\left\{\left[\underline{q}^{T} \underline{w}+\left(\underline{q}^{T} \underline{H}-\underline{\delta}_{\Delta}^{T}\right) \underline{a}\right]\left[\underline{q}^{T} \underline{w}+\left(\underline{q}^{T} \underline{H}-\underline{\delta}_{\Delta}^{T}\right) \underline{a}\right]^{*}\right\} \tag{19}\\
& =\mathrm{E}\left\{\left[\underline{q}^{T} \underline{w}+\left(\underline{q}^{T} \underline{H}-\underline{\delta}_{\Delta}^{T}\right) \underline{a}\right]\left[\underline{w}^{T} \underline{q}+\underline{a}^{T}\left(\underline{H}^{T} \underline{q}-\underline{\delta}_{\Delta}\right)\right]^{*}\right\} \tag{20}\\
& =\mathrm{E}\left\{\left[\underline{q}^{T} \underline{w}+\left(\underline{q}^{T} \underline{H}-\underline{\delta}_{\Delta}^{T}\right) \underline{a}\right]\left[\underline{w}^{H} \underline{q}^{*}+\underline{a}^{H}\left(\underline{H}^{H} \underline{q}^{*}-\underline{\delta}_{\Delta}\right)\right]\right\}, \tag{21}
\end{align*}
$$

[^0]where in (20) we transposed the scalar quantities on the right (e.g., $\underline{q}^{T} \underline{w}=\left(\underline{q}^{T} \underline{w}\right)^{T}=$ $\underline{w}^{T} \underline{q}$) and in (21) we distributed the complex conjugate, using the "Hermitian transpose" notation $(\cdot)^{H}:=(\cdot)^{T *}$. Expanding (21) gives
\[

$$
\begin{align*}
\mathcal{E}= & \mathrm{E}\left\{\underline{q}^{T} \underline{w w} \underline{w}^{H} \underline{q}^{*}\right\}+\mathrm{E}\left\{\underline{q}^{T} \underline{w a}^{H}\left(\underline{H}^{H} \underline{q}^{*}-\underline{\delta}_{\Delta}\right)\right\} \\
& +\mathrm{E}\left\{\left(\underline{q}^{T} \underline{H}-\underline{\delta}_{\Delta}^{T}\right) \underline{a w^{H}} \underline{q}^{*}\right\}+\mathrm{E}\left\{\left(\underline{q}^{T} \underline{H}-\underline{\delta}_{\Delta}^{T}\right) \underline{a a} \underline{ }^{H}\left(\underline{H}^{H} \underline{q}^{*}-\underline{\delta}_{\Delta}\right)\right\} \tag{22}\\
= & \underline{q}^{T} \mathrm{E}\left\{\underline{w w} \underline{w}^{H}\right\} \underline{q}^{*}+\underline{q}^{T} \mathrm{E}\left\{\underline{w a}^{H}\right\}\left(\underline{H}^{H} \underline{q}^{*}-\underline{\delta}_{\Delta}\right) \\
& +\left(\underline{q}^{T} \underline{H}-\underline{\delta}_{\Delta}^{T}\right) \mathrm{E}\left\{\underline{a w}^{H}\right\} \underline{q}^{*}+\left(\underline{q}^{T} \underline{H}-\underline{\delta}_{\Delta}^{T}\right) \mathrm{E}\left\{\underline{a a}^{H}\right\}\left(\underline{H}^{H} \underline{q}^{*}-\underline{\delta}_{\Delta}\right), \tag{23}
\end{align*}
$$
\]

where in (23) we moved the non-random quantities through the expectations.
Equation (23) can be simplified using the statistical properties of the random vectors \underline{a} and \underline{w}, which were each constructed from white sequences that are uncorrelated with each other. In particular, notice that

$$
\begin{align*}
\mathrm{E} & \left\{\underline{w w}^{H}\right\} \\
& =\mathrm{E}\left\{\left[\begin{array}{c}
\tilde{w}[0] \\
\tilde{w}[-1] \\
\vdots \\
\tilde{w}\left[1-N_{q}\right]
\end{array}\right]\left[\begin{array}{cccc}
\tilde{w}^{*}[0] & \tilde{w}^{*}[-1] & \cdots & \left.\tilde{w}^{*}\left[1-N_{q}\right]\right]
\end{array}\right\}\right. \tag{24}\\
& =\mathrm{E}\left\{\begin{array}{cccc}
\left.\left[\begin{array}{cccc}
\tilde{w}[0] \tilde{w}^{*}[0] & \tilde{w}[0] \tilde{w}^{*}[-1] & \cdots & \tilde{w}[0] \tilde{w}^{*}\left[1-N_{q}\right] \\
\tilde{w}[-1] \tilde{w}^{*}[0] & \tilde{w}[-1] \tilde{w}^{*}[-1] & \cdots & \tilde{w}[-1] \tilde{w}^{*}\left[1-N_{q}\right] \\
\vdots & \vdots & \ddots & \vdots \\
\tilde{w}\left[1-N_{q}\right] \tilde{w}^{*}[0] & \tilde{w}\left[1-N_{q}\right] \tilde{w}^{*}[-1] & \cdots & \tilde{w}\left[1-N_{q}\right] \tilde{w}^{*}\left[1-N_{q}\right]
\end{array}\right]\right\} \\
& =\left[\begin{array}{cccc}
\mathrm{E}\left\{\tilde{w}[0] \tilde{w}^{*}[0]\right\} & \mathrm{E}\left\{\tilde{w}[0] \tilde{w}^{*}[-1]\right\} & \cdots & \mathrm{E}\left\{\tilde{w}[0] \tilde{w}^{*}\left[1-N_{q}\right]\right\} \\
\mathrm{E}\left\{\tilde{w}[-1] \tilde{w}^{*}[0]\right\} & \mathrm{E}\left\{\tilde{w}[-1] \tilde{w}^{*}[-1]\right\} & \cdots & \mathrm{E}\left\{\tilde{w}[-1] \tilde{w}^{*}\left[1-N_{q}\right]\right\} \\
\vdots & \vdots & \ddots & \vdots \\
\mathrm{E}\left\{\tilde{w}\left[1-N_{q}\right] \tilde{w}^{*}[0]\right\} & \mathrm{E}\left\{\tilde{w}\left[1-N_{q}\right] \tilde{w}^{*}[-1]\right\} & \cdots & \mathrm{E}\left\{\tilde{w}\left[1-N_{q}\right] \tilde{w}^{*}\left[1-N_{q}\right]\right\}
\end{array}\right] \\
& =\mathrm{a} \operatorname{matrix} \text { whose }(m, n)^{t h} \text { entry equals } \mathrm{E}\left\{\tilde{w}[-m] \tilde{w}^{*}[-n]\right\}=\sigma_{w}^{2} \delta[n-m]
\end{array}\right. \tag{25}\\
& =\sigma_{w}^{2} \underline{I}, \tag{26}
\end{align*}
$$

where \underline{I} denotes the identity matrix. The same reasoning can be used to show

$$
\mathrm{E}\left\{\underline{a a}^{H}\right\}=\sigma_{a \underline{I}}^{2} .
$$

Similarly,

$$
\begin{align*}
\mathrm{E}\left\{\underline{a w}^{H}\right\} & =\text { a matrix whose }(m, n)^{t h} \text { entry equals } \mathrm{E}\left\{a[-m] \tilde{w}^{*}[-n]\right\}=0 \tag{29}\\
& =\underline{0}, \tag{30}
\end{align*}
$$

and $\mathrm{E}\left\{\underline{w a}^{H}\right\}=\left(\mathrm{E}\left\{\underline{a w}^{H}\right\}\right)^{H}=\underline{0}^{H}=\underline{0}$. Applying these relationships to (23), we get

$$
\begin{align*}
\mathcal{E} & =\sigma_{w}^{2} \underline{q}^{T} \underline{q}^{*}+\sigma_{a}^{2}\left(\underline{q}^{T} \underline{H}-\underline{\delta}_{\Delta}^{T}\right)\left(\underline{H}^{H} \underline{q}^{*}-\underline{\delta}_{\Delta}\right) \tag{31}\\
& =\sigma_{w}^{2}\|\underline{q}\|^{2}+\sigma_{a}^{2}\left\|\underline{H}^{T} \underline{q}-\underline{\delta}_{\Delta}\right\|^{2} \tag{32}
\end{align*}
$$

which shows that the MSE consists of $\sigma_{w}^{2}\|q\|^{2}$ (due to noise) plus $\sigma_{a}^{2}\left\|\underline{H}^{T} \underline{q}-\underline{\delta}_{\Delta}\right\|^{2}$ (due to ISI and error in the end-to-end gain). In general, minimizing the sum of these two components requires making a tradeoff between them. For example, setting $\underline{q}=\underline{0}$ would cancel the noise component but result in an end-to-end gain of zero. Similarly, choosing \underline{q} such that $\underline{H}^{T} \underline{q}=\underline{\delta}_{D}$ (if this is even possible) can amplify the noise.

To proceed further, we rewrite the MSE as follows.

$$
\begin{align*}
\mathcal{E} & =\underline{q}^{T} \underbrace{\left(\sigma_{w}^{2} \underline{I}+\sigma_{a}^{2} \underline{H} H^{H}\right.}_{:=\underline{A}}) \underline{q}^{*}-\underline{q}^{T} \underbrace{\underbrace{}_{\Delta} \delta_{\Delta} \sigma_{a}^{2}}_{:=\underline{b}}-\sigma_{a}^{2} \underline{\delta}_{\Delta}^{T} \underline{H}^{H} \underline{q}^{*}+\sigma_{a}^{2} \underbrace{\underline{\delta}_{\Delta}^{T} \underline{\delta}_{\Delta}}_{=1} \tag{33}\\
& =\underline{q}^{T} \underline{A} \underline{q}^{*}-\underline{q}^{T} \underline{b}-\underline{b}^{H} \underline{q}^{*}+\sigma_{a}^{2} . \tag{34}
\end{align*}
$$

By completing-the-square, ${ }^{2}$ the MSE expression (34) can be put into a convenient form, from which the MSE-minimizing \underline{q}^{*} will become readily apparent. To do this, it is essential that the matrix $\underline{A} \operatorname{can}^{3}$ be decomposed as $\underline{A}=\underline{B} \underline{B}^{H}$, so that

$$
\begin{align*}
\mathcal{E} & =\underline{q}^{T} \underline{B B^{H}} \underline{q}^{*}-\underline{q}^{T} \underline{b}-\underline{b}^{H} \underline{q}^{*}+\sigma_{a}^{2} \tag{35}\\
& =\underline{q}^{T} \underline{B B^{H}} \underline{q}^{*}-\underline{q}^{T} \underline{B B^{-1}} \underline{b}-\underline{b}^{H} \underline{B}^{-H} \underline{B}^{H} \underline{q}^{*}+\sigma_{a}^{2} \tag{36}\\
& =\left(\underline{q}^{T} \underline{B}-\underline{b}^{H} \underline{B}^{-H}\right)\left(\underline{B}^{H} \underline{q}^{*}-\underline{B}^{-1} \underline{b}\right)-\underline{b}^{H} \underbrace{B^{-H} \underline{B}^{-1}}_{=\underline{A}^{-1}} \underline{b}+\sigma_{a}^{2} \tag{37}\\
& =\underbrace{\left(\underline{B}^{H} \underline{q}^{*}-\underline{B}^{-1} \underline{b}\right)^{H}\left(\underline{B}^{H} \underline{q}^{*}-\underline{B}^{-1} \underline{b}\right)}_{\geq 0}+\underbrace{}_{\mathcal{E}_{\min }^{\sigma_{a}^{2}-\underline{b}^{H}} \underline{A}^{-1} b} . \tag{38}
\end{align*}
$$

Note that the equalizer parameters only affect the first term in (38), which is non-negative. So, to minimize \mathcal{E} via choice of g, the best we can do is to set the first term in (38) to zero, at which point the second term specifies the minimum possible \mathcal{E}. Thus, the MSEminimizing equalizer parameters are those which give $\underline{B}^{H} \underline{q}_{\min }^{*}=\underline{B}^{-1} \underline{b}$, i.e.,

$$
\begin{align*}
\underline{q}_{\min }^{*} & =\underline{B}^{-H} \underline{B}^{-1} \underline{b}=\underline{A}^{-1} \underline{b}=\left(\sigma_{w}^{2} \underline{I}+\sigma_{a}^{2} \underline{H H}^{H}\right)^{-1} \underline{H \delta} \Delta \sigma_{a}^{2} \tag{39}\\
& =\left(\frac{\sigma_{w}^{2}}{\sigma_{a}^{2}} \underline{I}+\underline{H H}^{H}\right)^{-1} \underline{H \delta} \tag{40}
\end{align*}
$$

and the minimum MSE is

$$
\begin{align*}
\mathcal{E}_{\min } & =\sigma_{a}^{2}-\underline{b}^{H} \underline{A}^{-1} \underline{b} \tag{41}\\
& =\sigma_{a}^{2}-\sigma_{a}^{2} \underline{\delta}_{\Delta}^{T} \underline{H}^{H}\left(\sigma_{w}^{2} \underline{I}+\sigma_{a}^{2} \underline{H H^{H}}\right)^{-1} \underline{H \delta} \Delta \sigma_{a}^{2} \tag{42}\\
& =\sigma_{a}^{2}\left(1-\underline{\delta}_{\Delta}^{T} \underline{H}^{H}\left(\frac{\sigma_{w}^{2}}{\sigma_{a}^{2}} \underline{I}+\underline{H H}^{H}\right)^{-1} \underline{H \delta} \Delta\right) . \tag{43}
\end{align*}
$$

[^1]Finally, we can see how the delay Δ can be optimized. Notice from (43) that the term

$$
\underline{\delta}_{\Delta}^{T} \underline{H}^{H}\left(\frac{\sigma_{w}^{2}}{\sigma_{a}^{2}} \underline{I}+\underline{H H}^{H}\right)^{-1} \underline{H \delta}{ }_{\Delta}
$$

is simply the $\Delta^{\text {th }}$ diagonal element of the matrix $\underline{H}^{H}\left(\frac{\sigma_{w}^{2}}{\sigma_{a}^{2}} \underline{I}+{\underline{H} H^{H}}^{H}\right)^{-1} \underline{H}$, and that $\mathcal{E}_{\text {min }}$ decreases as this term gets bigger. Thus, the MSE-minimizing Δ is simply the index of the maximum diagonal element of the matrix $\underline{H}^{H}\left(\frac{\sigma_{w}^{2}}{\sigma_{a}^{2}} \underline{I}+\underline{H}^{H}\right)^{-1} \underline{H}$.

[^0]: ${ }^{1}$ Note that $\Delta=0$ indicates the first place, so that $\underline{\delta}_{0}=[1,0, \ldots, 0]^{T}$.

[^1]: ${ }^{2}$ For scalar quantities, this means writing $x^{2}-2 x y+z=(x-y)^{2}-y^{2}+z$.
 ${ }^{3}$ To see this, we can use the singular value decomposition (SVD) $\underline{H}=\underline{U S V}{ }^{H}$, where \underline{U} and \underline{V} are unitary and \underline{S} is non-negative diagonal, to write $\underline{A}=\left(\sigma_{w}^{2} \underline{U U^{H}}+\sigma_{a}^{2} \underline{U S V^{H}} \underline{V S U^{H}}\right)=\underline{U}\left(\sigma_{w}^{2} \underline{I}+\sigma_{a}^{2} \underline{S}^{2}\right) \underline{U}^{H}=$ $\underline{U \Sigma^{2}} \underline{U}^{H}$. Thus, if we define $\underline{B}:=\underline{U \Sigma}$, then $\underline{A}=\underline{B}^{H}$. Note that \underline{B} is guaranteed invertible when $\sigma_{w}^{2}>0$.

