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While the design methodology for fuzzy controllers has
proven itself in certain commercial and industrial applica-
tions, there is a significant need to perform mathematical
analysis of fuzzy control systems prior to implementation:
(i) to verify and certify their behavior so that, for exam-
ple. instabilities can be avoided for applications demanding
highly reliable operation such as aircraft and nuclear reactor
control, and (ii) to provide insight to the expert on how to
modify the fuzzy controller to guarantee that performance
specifications are met (e.g., to guarantee a specified rise-
time or the absence of steady state tracking error). In this
paper we provide a survey of, and an introduction to the area
of nonlinear analysis of fuzzy control systems. We begin by
overviewing several approaches to stability analysis includ-
ing Lyapunov’s Direct and Indirect Methods, and the Circle
Criterion. We provide examples to illustrate how to design
stable fuzzy control systems and test for stability, includ-
ing an application of Lyapunov’s direct method to Takagi-
Sugeno fuzzy systems. Next, we introduce the idea of an-
alyzing the steady state tracking error of a class of fuzzy
control systems and provide examples of how to predict and
reduce steady state error. Finally, we provide an introduc-
tion to the use of the describing function technique for the
prediction of the existence, frequency, amplitude, and sta-
bility of limit cycles. We provide examples of limit cycle
analysis and show how to design fuzzy controllers to avoid
limit cycles. While our primary objective is to provide a
control-theoretic introduction to, and survey of approaches
to nonlinear analysis of fuzzy control systems where we uti-
lize several existing results and provide useful tutorial ex-
amples, in the process we actually make contributions by
providing, for example, the first results that show how to an-
alyze steady state tracking error for fuzzy control systems.
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1. Introduction

We begin by explaining the role and current state-
of-the-art of nonlinear analysis in fuzzy control sys-
tem design. Next, we overview the work that has di-
rectly influenced the development of this tutorial sur-
vey and outline the contents of this paper.

1.1. Motivation for nonlinear analysis

The fuzzy controller design methodology primar-
ily involves distilling human expert knowledge about
how to control a system into a set of rules. While a sig-
nificant amount of attention has been given to the ad-
vantages of the heuristic fuzzy control design method-
ology (which is similar to an expert system construc-
tion methodology), relatively little attention has been
given to its possible disadvantages. For example, the
following questions are cause for concern:

— Will the behaviors observed by a human expert
include all possibly unforeseen situations that
can occur due to disturbances, noise, or plant pa-
rameter variations?

— Can the human expert realistically and reliably
foresee problems that could arise from closed-
loop system instabilities or limit cycles?

~ Will the expert really know how to incorporate
stability criteria and performance objectives (e.g.
rise-time, overshoot, and tracking specifications)
into a rule-base to ensure that reliable operation
can be obtained?

These questions may seem even more troublesome if:
(1) the control problem involves a “critical environ-
ment” where the failure of the control system to meet
performance objectives could lead to loss of human
life or an environmental disaster (e.g., in aircraft or
nuclear power plant control), or (ii) if the human ex-
pert’s knowledge implemented in the fuzzy controller
is somewhat inferior to that of a very experienced spe-
cialist that we expect to have designed the control sys-
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tem (different designers have different levels of ex-
pertise). Clearly then for some applications there is
a need for a methodology to develop, implement, and
evaluate fuzzy controllers to ensure that they are reli-
able in meeting their performance specifications.

The standard control engineering methodology in-
volves repeatedly coordinating the use of?

modeling,

controller (re)design,
simulation,

mathematical analysis,
implementation/evaluation.

T b A (B =

to develop control systems. Next, we will examine
the relevance of this established methodology to the
development of fuzzy control systems. Engineering a
fuzzy control system uses many ideas from the stan-
dard control engineering methodology except in fuzzy
control it is often said that a formal mathematical
model is assumed unavailable so that mathematical
analysis is impossible. While it is often the case that it
is difficult, impossible, or cost-prohibitive to develop
an accurate mathematical model for many processes,
it is almost always possible for the control engineer to
specify some type of approximate model of the pro-
cess (afterall, we do know what physical object we
are trying to control). Indeed, it has been our expe-
rience that most often the control engineer develop-
ing a fuzzy control system does have a mathematical
model available. While it may not be used directly
in controller design, it is often used in simulation to
evaluate the performance of the fuzzy controller be-
fore it is implemented. Certainly there are some ap-
plications where one can design a fuzzy controller and
evaluate its performance directly via an implemena-
tion. In such applications one is not overly concerned
with the failure of the control system (e.g., for some
commercial products such as washing machines or a
shaver) and therefore there may be no need for a math-
ematical model for conducting simulation-based eval-
uations before implementation. In other applications
there is the need for a high level of confidence in the
reliability of the fuzzy control system before it is im-
plemented.

In addition to simulation-based studies, one ap-
proach to enhancing our confidence in the reliability
of fuzzy control systems is to use the mathematical
model of the plant and nonlinear analysis for (i) verifi-
cation of stability and performance specifications and
(ii) possible re-design of the fuzzy controller. Some
may be confident that a true expert would (i) never

need anything more than intuitive knowledge for rule-
base design, and (ii) never design a faulty fuzzy con-
troller. However, a true expert will certainly use all
available information to ensure the reliable operation
of a control system including approximate mathemati-
cal models, simulation, nonlinear analysis, and exper-
imentation. We emphasize, however, that mathemat-
ical analysis cannot alone provide the definitive an-
swers about the reliability of the fuzzy control system
since such analysis proves properties about the model
of the process, not the actual physical process. It can
be argued that a mathematical model is never a per-
fect representation of a physical process; hence, while
nonlinear analysis may appear to provide definitive
statements about control system reliability, it is un-
derstood that such statements are only accurate to the
extent that the mathematical model is accurate. Non-
linear anlaysis does not replace the use of common
sense and evaluation via simulations and experimen-
tation; it simply assists in providing a rigorous engi-
neering evaluation of a fuzzy control system before it
is implemented.

It is important to note that the advantages of fuzzy
control often become most apparent for very com-
plex problems where we have an intuitive idea about
how to achieve high performance control. In such
control applications an accurate mathematical model
is so complex (i.e., high order, nonlinear, stochastic,
with many inputs and outputs) that it is sometimes not
very useful for the analysis and design of conventional
control systems (since assumptions needed to apply
conventional control are often violated). The con-
ventional control engineering approach to this prob-
lem is to use an approximate mathematical model
that is accurate enough to characterize the essential
plant behavior, yet simple enough so that the nec-
essary assumptions to apply the analysis and design
techniques are satisfied. However, due to the inac-
curacy of the model, upon implementation the devel-
oped controllers often need to be tuned via the “ex-
pertise” of the control engineer. The fuzzy control
approach, where explicit characterization and utiliza-
tion of control expertise is used earlier in the design
process, largely avoids the problems with model com-
plexity that are related to design (i.e., for the most
part fuzzy control system design does not depend on a
mathematical model®). However, the problems with

?Fuzzy control system design can depend on a mathematical model
if one needs it to perform simulations to gain insight into how to
choose the rule-base and membership functions.
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model complexity that are related to analysis have
not been solved (i.e., analysis of fuzzy control sys-
tems critically depends on the form of the mathemat-
ical model); hence, it is often difficult to apply non-
linear analysis techniques to the applications where
the advantages of fuzzy control are most apparent!
For instance, existing results for stability analysis of
fuzzy control systems typically require that the plant
model be deterministic, satisfy some continuity con-
straints, and sometimes require the plant to be linear
or “linear-analytic”. The only results for analysis of
steady state tracking error of fuzzy control systems,
which are introduced here, and the existing results on
the use of describing functions for analysis of limit
cycles essentially require a linear time-invariant plant
(or one that has a special form so that the nonlinear-
ities can be bundled into one nonlinear component in
the loop). The current status of the field, as character-
ized by these limitations, coupled with the importance
of nonlinear analysis of fuzzy control systems, make
it an open area for research where an introductory sur-
vey can help establish the necessary foundations for a
bridge between the fuzzy control and nonlinear anal-
ysis communities®.

Overall, as an introduction and survey, the objec-
tives of this paper are to:

1. Help teach sound techniques for the construction
of fuzzy controllers by alerting the designer to
some of the pitfalls (e.g., instabilities, limit cy-
cles, steady state errors) that can occur if a rule-
base is constructed improperly;

2. Provide insights into how to modify the fuzzy
controller rule-base to guarantee that perfor-
mance specifications are met (thereby helping
make the fuzzy controller design process more
systematic); and

3. Provide a motivation and foundation for future
work in the area of using nonlinear analysis as
a technique to enhance a rigorous control engi-
neering evaluation for the verification and certifi-
cation of fuzzy control systems that are to operate
in critical environments.

Clearly fuzzy control technology is leading the theory; the prac-
tioner will go ahead with the design and implementation of many
fuzzy control systems without the aid of nonlinear analysis. In the
mean time, theorists will attempt to develop a mathematical the-
ory for the verification and certification of fuzzy control systems.
This theory will have a synergistic effect by driving the develop-
ment of fuzzy control systems for applications where there is a need
for highly reliable implementations.

In particular, in this tutorial survey paper we will show
how the use of the standard approach to fuzzy con-
troller design can result in limit cycles, steady state
tracking errors, and instabilities even for simple lin-
ear plants. We will provide an introduction to the use
of nonlinear analysis techniques (i.e., stability analy-
sis, describing function analysis, and steady state error
analysis) for fuzzy control system analysis and show
how they can aid in picking the membership functions
in a fuzzy controller to avoid limit cycles, instabili-
ties, and ultimately to meet a variety of closed-loop
specifications. Since most fuzzy control systems are
“hybrid” in that the controller contains a linear por-
tion (e.g., an integrator or differentiator) as well as a
nonlinear portion (a fuzzy system), we will show how
to use nonlinear analysis to design both of these por-
tions of the fuzzy control system.

Essentially, we will show in this paper how to ex-
ploit the information that can be obtained from the use
of a mathematical model (even if the model is inex-
act or represents the linearization of a nonlinear plant)
to enhance the performance of a fuzzy control sys-
tem. We do not suggest that the conventional fuzzy
control system design approach be discarded, but that
it be augmented with information from mathematical
modeling and analysis if such information is available
and the application dictates its use. This paper takes
a step in the direction of joining conventional nonlin-
ear control analysis and design approaches with the
standard approach to fuzzy control system design. We
acknowledge the value of both approaches and are try-
ing to find the best parts of both and combine them
to improve the control system design process. For a
more detailed discussion on (i) the general relation-
ships between conventional and intelligent control,
and (ii) mathematical modeling and nonlinear analysis
of more general intelligent control systems (including
expert control systems) see [3, 30, 35-37].

1.2. Literature overview and paper summary

As the reader will see, the introduction to nonlin-
ear analysis of fuzzy control systems developed here
requires a good knowledge of “classical control” (pri-
marily the Laplace transform, Root locus, Bode and
Nyquist plots, and system type and tracking error) and
at least an introductory course on differential equa-
tions, but does not require the reader to have stud-
ied more advanced topics in mathematics and control,
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Throughout the development of this paper it will be-
come clear that we advocate the use of graphical ap-
proaches for nonlinear analysis of fuzzy control sys-
tems since such approaches (i) fit well with the over-
all philosophy of using intuition to design fuzzy con-
trollers, and (ii) adopt a similar philosophy to what
is used in classical control where graphs and intuition
have played a major role in the successful construction
of many control systems. In this section we overview
the contents this paper and explain the relevance of
other work to the tutorial survey that we present here.
We begin by overviewing the relevant work in stability
analysis.

The work in [11] and [14] presents Lyapunov meth-
ods for analyzing stability of fuzzy control systems.
The authors in [27, 28] also use Lyapunov’s Direct
Method and the Generalized Theorem of Popov [32]
to provide sufficient conditions for fuzzy control sys-
tem stability. In [4], stability indices for fuzzy con-
trol systems are established using phase portraits (of
course standard phase plane analysis [24] can be use-
ful in characterizing and understanding the dynamical
behavior of low order fuzzy control systems [19]). Re-
lated work is given in [16]. The Circle Criterion [32]
is used in [38] and [39] to provide sufficient condi-
tions for fuzzy control system stability. Related work
is given in [7, 23, 41].

An area that is receiving an increasing amount of at-
tention is in the area of stability analysis of fuzzy con-
trol systems where the fuzzy control system is devel-
oped using ideas from sliding mode control or where
Takagi-Sugeno fuzzy systems [43] are used in a gain
scheduling type of control [15, 33, 34]. Here, our
treatment of the stability of Takagi-Sugeno fuzzy sys-
tems is based on the work in [44, 46, 48]. Extensions
to this work that focus on robustness can be found
in [45, 47] and work focusing on the use of linear ma-
trix inequality (LMI) methods for analysis and con-
troller construction is provided in [45, 50, 51, 53, 54].

The characterization and analysis of the stability of
fuzzy dynamical systems is studied in [26]. Further-
more, approximate analysis of fuzzy systems is stud-
ied by the authors in [12, 13, 17] using the “cell-to-cell
mapping approach™ from [20, 21].

In Section 2 we overview the notation that we use
to discuss fuzzy controllers and in Section 3 we in-
troduce Lyapunov’s direct and indirect methods and
provide a tutorial example of how to use Lyapunov’s
indirect method for stability analysis of a fuzzy con-
trol system for an inverted pendulum. In addition we

show how to use Lyapunov’s direct method for stabil-
ity analysis of Takagi-Sugeno fuzzy systems (due to
space constraints we cannot cover the Takagi-~Sugeno
fuzzy system but refer the reader to [15, 43] for a nice
introduction). In addition, in Section 3.2 we provide a
tutorial example on the use of the Circle Criterion to
study absolute stability of fuzzy control systems.

Improvement of steady state tracking error in con-
trol systems is of fundamental importance. To date,
for fuzzy control systems the best one could do is at-
tempt to reduce tracking error by heuristic re-design
of the fuzzy controller rule-base. In Section 4, we will
show that the approach in [40] for analysis of steady
state errors in nonlinear control systems can be ap-
plied to fuzzy control systems. A tutorial example will
be used to illustrate how to predict and reduce steady
state errors in fuzzy control systems.

Nonlinearities in control systems, such as fuzzy
controllers, sometimes cause limit cycles (isolated pe-
riodic orbits [24]) in the system response. Using the
Circle Criterion we can sometimes prove the absolute
stability of a system and therefore the absence of limit
cycles. Likewise, using a steady state error predic-
tion procedure we can sometimes prove the absence
of limit cycles if we show that the steady state error is
zero. However, neither of these techniques will pre-
dict the amplitude or frequency of limit cycles when
they exist. In Section 5 we will illustrate how describ-
ing function analysis [5] can be used to predict the
existence, stability, frequency, and amplitude of limit
cycles in fuzzy control systems. This type of analysis
has already been examined in [25] and very recently
in [6]. Even though the author in [6] uses a quan-
tized fuzzy controller and mathematically determined
describing functions while we use continuous fuzzy
controllers and experimentally determined describing
functions, there is little conceptual difference between
what we do in this paper and what is done in [6]. How-
ever, the work in this paper was done simultaneously
to and independent of the work in [6]. Our work will
differ from that in [25] in that we will use experimen-
tally determined describing functions whereas in [25]
the describing function is determined for a “multi-
level relay” model of a specific class of fuzzy con-
trollers. Very recently there has been some additional
work on the use of the describing function to analyze
and design fuzzy control systems presented in [1, 2].
In Section 3, after providing a brief overview of the
theory of describing functions, we an several example
of how to use the describing function method for the



D.F. Jenkins and K.M. Passino / An introduction to nonlinear analysis of fuzzy control systems 79

prediction of limit cycles and for designing the fuzzy
controller to eliminate limit cycles.

In Section 6 we provide some concluding remarks
where we overview the contents and contributions of
this paper, outline the limitations of the nonlinear
analysis techniques, and provide several research di-
rections.

2. Fuzzy control

In this section we will introduce the fuzzy control
system to be investigated and briefly examine the non-
linear characteristics of the fuzzy controller. For the
applications in this paper (except some in Section 3.1),
the closed-loop systems will be as shown in Fig. |
(where we assume that G/(s) is a single input single
output (SISO) linear system) or they will be modified
slightly so that the fuzzy controller is in the feedback
path. We will be using both SISO and MISO (multi-
ple input single output) fuzzy controllers as they are
defined in the next subsections. The intent of this sec-
tion is to merely provide an explanation of the notation
that we use in discussing fuzzy controllers. For an in-
troduction to fuzzy control see [29, 55]. For a detailed
comparative anlaysis of fuzzy controllers and linear
controllers and more details on the nonlinear charac-
teristics of fuzzy controllers see [8-10, 52].

2.1. Proportional fuzzy controller

For the “proportional fuzzy controller” (as the SISO
fuzzy controller is sometimes called) shown in Fig. 2
the rule-base can be constructed in a symmetric fash-
ion typically with rules of the following form:

If e is NB then u is NB.
If e is NM then u is NM.
If e is NS then u is NS.
Ifeis ZE then u is ZE.
It e is PS then u is PS.
If e is PM then u is PM.
7. Ifeis PB then uis PB.

where NB, NM, NS, ZE, PS, PM, and PB are “lin-
guistic values”. The membership functions for the
premises and consequents of the rules are symmetric,
normal, and uniformly distributed triangular member-
ship functions as shown in Fig. 3. Notice in Fig. 3 that
the widths of the membership functions are parame-

B v el B e

terized by A and B. Throughout this paper, unless
it is indicated otherwise, the same rule-base and sim-
ilar uniformly distributed membership functions will
be used for all applications (where if the number of
input and output membership functions and rules in-
crease our analysis approaches work in a similar man-
ner). The fuzzy controller will be adjusted by chang-
ing the values of A and B. The manner in which these
values affect the nonlinear map that the fuzzy con-
troller implements will be discussed below. The fuzzy
inference block operates by using the product to com-
bine the conjunctions in the premise of the rules and in
the representation of the fuzzy implication. Singleton
fuzzification is used and defuzzification is performed
using the centroid method (for further explanation see
[29, 55]).

The SISO fuzzy controller described above im-
plements a static nonlinear input-output (I/O) map
between its input e(f) and output u(t) (we assume
throughout the paper that the fuzzy controller is de-
signed so that the existence and uniqueness of the
solution of the differential equation describing the
closed-loop system is guaranteed). The particular
shape of the nonlinear map depends on the rule-
base, inference strategy, fuzzification, and defuzzifi-
cation strategy utilized by the fuzzy controller. Two
I/O maps for different rule-bases implemented in the
fuzzy controller are shown in Fig. 4 with A = B = 1.
Rule-Base 1 is of the symmetric form described at the
beginning of this subsection while Rule-Base 2 uses
the same values of A and B as Rule-Base | but the
consequents of the rule-base were chosen differently.
Modifications to the fuzzy controller can provide an
infinite variety of such I/O maps. Notice, however,
that there is a marked similarity between the /O map
in Fig. 4(a) and the standard saturation nonlinear-
ity. In fact, the parameters A and B from the fuzzy
controller are equivalent to the saturation parameters
of the standard saturation nonlinearity, i.e., B is the
level at which the output saturates and A is the value
of ¢(t) at which the saturation of u(t) occurs. Be-
cause the 1/0 map is odd, —B is the saturation level
for e(t) < —A and — A is the value of e(¢) where the
saturation occurs. By modifying A and B (and hence
moving the input and output membership functions)
we can change the I/0 map nonlinearity and its effects
on the system. Throughout this introductory paper we
will always use rules in the form of Rule-Base 1. We
emphasize, however, that the nonlinear analysis tech-
niques used in this paper will work in the same manner
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for other types of rule-bases (and different fuzzifica-
tion, inference, and defuzzification techniques).

2.2. Proportional-derivative fuzzy controller

There are many different types of fuzzy controllers
we could examine for the multiple input single output
(MISO) case. We will constrain ourselves to the two
input “proportional-derivative fuzzy controller” (as it
is sometimes called). This controller, shown in Fig. 5,
is similar to our SISO fuzzy controller with the addi-
tion of the second input, é. In fact, the membership
functions on the universes of discourses and linguistic
values NB, NM, NS, ZE, PS, PM, and PB for e and
u are the same as shown in Fig. 3 and will still be ad-
justed using the parameters A and B respectively. The
membership functions on the universe of discourse
and the linguistic values for the second input, é, are
the same as for e with the exception that the adjust-
ment parameter will be denoted by D. Therefore there
are now three parameters for changing the fuzzy con-
troller: A, B, and D. Assuming that there are seven
membership functions on each input universe of dis-
course, there are 49 possible rules that can be put in

the rule-base. A typical rule will take on the form:
IF eis NB AND ¢ is NB THEN u is NB.

The complete set of rules is shown in tabulated form
in Fig. 6. In Fig. 6 the premises for the input e are
represented by the linguistic values found in the top
row, the premises for the input é are represented by the
linguistic values in the left most column, and the lin-
guistic value representing the consequent for each of
the 49 rules can be found at the intersection of the row
and column of the appropriate premises. The shaded
section of Fig. 6 is the representation of the above
rule “IF ¢ is NB AND ¢ is NB THEN « is NB”. The
remainder of the MISO fuzzy controller is similar to
the SISO fuzzy controller (i.e., singleton fuzzification,
the product for the premise and fuzzy implication, and
centroid defuzzification are used).

We can also construct an /O map for this MISO
fuzzy controller. While a three dimensional plot of
this map is possible, we show a two dimensional plot
of u(t) for A= B=D =1 in Fig. 7. In this figure
each line represents u(t) for a different value of é(t).
The parameters A and B have the same effect as with
the SISO fuzzy controller. By changing the values
A. B, and D we will be able to change the effect of
the MISO fuzzy controller on the closed-loop system
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Fig. 3. Membership functions for e(t) and wu(t),

without reconstructing the rule-base or any other por-
tion of the fuzzy controller. Again, we emphasize that
while we use this particular fuzzy controller which is
conveniently parameterized by A, B, and D, the ap-
proaches to nonlinear analysis in this paper work in
a similar manner for fuzzy controllers that use other
membership functions, rule-bases, inference engines,
and fuzzification and defuzzification strategies.

3. Stability analysis

Often the designer is first concerned about investi-
gating the stability properties of a fuzzy control sys-
tem since it is often the case that if the system is un-
stable there is no chance that any other performance
specifications will hold. For example, if the fuzzy
control system for a nuclear reactor is unstable, one
would be more concerned with the possibility of a
melt-down rather than with the efficiency of energy
production. In this section we overview three ap-
proaches to stability analysis of fuzzy control systems:
Lyapunov’s direct and indirect methods, and the Cir-
cle Criterion approach to the analysis of absolute sta-
bility.

3.1. Lyapunov stability analysis

3.1.1. Theory

Following [24, 31] suppose that a dynamical system
is represented with

&(t) = f(z(t)) (1

wherez € R" and f : D — R" with D = R" or
D = B(h) for some h > 0 where B(h) = {x € R" :
|z| < h}and |-| isanorm on R" (e.g., x| = /(ztx)).
Assume that for every @ the initial value problem

z(t) = f(2(0)), 2(0) =z ()

possesses a unique solution ¢(t, ) which depends
continuously on xy. A point z, € R" is called an
“equilibrium point” of (1) if f(z.) = 0 forall ¢ > 0.
An equilibrium point z. is an “isolated equilibrium
point” if there is an h’ > 0 such that B(z.,h') =
{z € " : |z — z.| < A’} T R™ contains no other
equilibrium points besides z.. As is standard we will
assume that the equilibrium of interest is an isolated
equilibrium located at the origin of ™. This assump-
tion results in no loss of generality since if . # 0 is
an equilibrium of (1) and we let Z(t) = »(t) — z. then
@ = 0 is an equilibrium of the transformed system

z(t) = f(z(t)) = F(&(t) + zc).
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The equilibrium 2, = 0 of (1) is “stable” (in the
sense of Lyapunov) if for every ¢ > () there exists
a d(e) > 0 such that |¢(t,zo)| < € forallt = 0
whenever |zo| < &(e). A system that is not stable
is called “unstable”. The equilibrium z. = 0 of (1)
is said to be asymptotically stable if it is stable and
there exists 7 > 0 such that lim,_. ¢(t,z9) = 0
whenever |zy| < 7. The set Xy C R" of all 2y €
R" such that ¢(f,2q) — 0ast — oc is called the
“domain of attraction™ of the equilibrium z,. = 0 of
(1). The equilibrium z, = 0 is said to be “globally
asymptotically stable™ if X; = R".

The stability results for an equilibrium z, = 0 of

(1) that we provide next depend on the existence of an
appropriate “Lyapunov function” V' : D — R where
D = R" for global results and D = B(h) for some

h > 0, for local results. If V' is continuously differen-
tiable with respect to its arguments then the derivative
of V with respect to t along the solutions of (1) is

Vi ((t)) = YV (@()" f(x(t)) (&)
where VV (z(t)) = %,%, ; ..,.“aa;—lr is the gra-

dient of V' with respect to x.

Lyapunov's direct method:
1. Let ., = 0 be an equilibrium for (1). Let V :
B(h) — R be a continuously differentiable func-
tion on B(h) such that V(0) = 0 and V() > 0
in B(h) — {0}, and V;1(x) < 0in B(h). Then
. = 0 is stable. If in addition, V(l)(:r:) < 0in
B(h)—{0} then z. = 0 is asymptotically stable.
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Fig. 6. Table of P-D fuzzy controller rules.

2. Let @, = 0 be an equilibrium for (1). Let
V : R" — R be a continuously differentiable
function such that V(0) = 0 and V(x) > 0 for
all x # 0, |x| — oo implies that V(z) — oq,
and Vy)(z) < 0 forall z # 0, then z, = Oisa
globally asymptotically stable.

Let %é = [‘J’}L} denote the n x n “Jacobian ma-
K

trix”. For the next result assume that f : D — R"

where [ € R", that z, € D, and that f is continu-

ously differentiable.

Lyvapunov's indirect method:
Let z. = 0 be an equilibrium point for the nonlinear
system (1). Let the n x n matrix

A= —(x) (4)

then

1. The origin z. = 0 is asymptotically stable if
Re[\;] < 0 (the real part of ;) for all eigenval-
ues A; of A;

2. The origin z, = 0 is unstable if Re[A;] > 0 for
one or more eigenvalues of A; and

3. If Re[\;] < 0 for all ¢ with Re[A;] = 0 for some
i where the ); are the eignevalues of A then we
cannot conclude anything about the stability of
x, = 0 from Lyapunov’s indirect method.

3.1.2. Example

As outlined in the Introduction there have been sev-
eral researchers who have investigated the use of Lya-
punov stability theory for analysis of fuzzy control
systems. Here we will illustrate the use of Lyapunov’s
indirect method for stability analysis of a simple in-
verted pendulum.

A simple model of the inverted pendulum is given
by [24]

.‘1'1 = I,

. g . - L = (5)

Ty =—3 sin(z)) — E;I,'g + L
where ¢ = 981, ¢ = 1.0, m = 1.0, k = 0.5, =,
is the angle (in radians) the pendulum makes relative
to its vertical (downward position), x5 is the angular
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Fig. 7. 2-Dimensional P-D fuzzy controller I/O map.

velocity (in radians per second), and T is the control
input.

If we assume that 7" = 0 then there are two distinct
isolated equilibrium points, one in the downward po-
sition [0 0] and one in the inverted position [7 0]".
Since we are interested in the control of the pendu-
lum about the inverted position we need to translate
the equilibrium by letting & = z — [ 0]*. From this
we obtain

(6)

where if " = 0 then & = 0 corresponds to the equilib-
rium [7 0] in the original system (5) so studying the
stability of Z = 0 corresponds to studying the stabil-
ity of the fuzzy control system about the inverted po-
sition. Now, it is traditional to omit the cumbersome
bar notation in (6) and study the stability of = = 0 for
the system

i‘1=-?52=f1(-’l-‘)1k ,
1

Ty = %sin(m_)agrﬁmﬂ = fa(z), )

with the understanding that we are actually studying

the stability of (6). Assume that the fuzzy controller

denoted by ®(xy, z3), which utilizes x, and z» as in-

puts to generate T as an output, is designed so that f

is continuously differentiable and that D is a neigh-
borhood of the origin. For (7)

8 Oh

dxy g

8fz Ofz

Az Ozz d lx=0

A

I

(8)
0 1

9 1 0T
e

k 1_aT
mE Bz; m T mé bz;

me2 Bxg d |le=0
To ensure that the eigenvalues \;, i = 1,2, of A are in
the left half of the complex plane it is sufficient that

k 1 aT
Wil Ja
+('m me2aa:2)

g 1 a7\
+( ¢ m?zaxl) =0
where z = () has its roots in the left half plane. Equa-
tion (9) will have its roots in the left half plane if each
of its coefficients are positive (this can be seen by use

of the Routh Criterion [18]); hence if we substitute the
values of the model parameters we need

o < 0.5, or

€

< -981 (10

—— —
O3 |, Oy |,

to ensure asymptotic stability. To show that these con-
ditions are met we design a fuzzy controller (different
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from the one that is given in Section 2) and simply
plot the controller surface and check these conditions
graphically. We omit the details due to space con-
straints.

3.1.3. Stability analysis of Takagi-Sugeno fuzzy
systems

While in the remainder of this paper we consider
nonlinear analysis of fuzzy control systems where the
fuzzy controller is the “standard” one, in this one sub-
section we consider the case where the plant and con-
troller are Takagi—Sugeno fuzzy systems (due to space
constraints we cannot provide a detailed introduction
to the Takagi—Sugeno fuzzy system and hence must
refer the reader unfamiliar with these to [15, 43, 46]).
While here we will study the continuous-time case, in
[48] the authors focus on the discrete-time case.

The fuzzy system defined in the previous section
will be referred to as a “standard fuzzy system.” In
this section we will define a Takagi—Sugeno fuzzy sys-
tem [43]. For the Takagi—Sugeno fuzzy system we use
singleton fuzzification and the :-th MISO rule has the
form

If 7, is A} and 7, is AS and, ..., and &, is A,

Then ¢; = a0 +@i1%1 + +* + Qi nTn

(where the a; ; are real numbers). The premise of
this rule is defined the same as for a MISO rule for
a standard fuzzy system. The consequents of the rules
are different. Instead of a linguistic term with an as-
sociated membership function, in the consequent we
use a function ¢; = g;(-) that does not have an as-
sociated membership function. For a Takagi-Sugeno
fuzzy system the consequent mappings are linear (ac-
tually “affine” due to the a; o term).

It is important to note that a Takagi—Sugeno fuzzy
system may have any linear mapping (affine mapping)
as its output function and this contributes to the gen-
erality of the Takagi—Sugeno fuzzy system. One map-
ping that has proven to be particularly useful is to have
a linear dynamical system as the output function so
that the i-th rule has the form

If 7, 1s fl{ and s is A’g and, ..., and I, is fi;,
Then &'(t) = A;a(t) + Biu(t).
Here, z(t) = [z1(t),z2(t),...,za(t)]" is the n-
dimensional state, u(t) = [uy(2),uz(t), ..., un(f)]*

is the m-dimensional model input, and A; and B;,
i = 1,2,..., R are the state and input matrices of

appropriate dimension. This fuzzy system can be
thought of as a nonlinear interpolator between R lin-
ear systems.

Let y; denote the certainty of the premise of the i-th
rule and define
o) = = ED__
Yoy iz (L))

With this, the Takagi—Sugeno fuzzy system can be
written as

SR (A(t) + Bou(t) iz (2))
S pilz(t))

(t) =

or
#(t) = (T, Ak(e) 21
+ (T Bt (1)) u(t)

If R = 1 we get a standard linear system. Gener-
ally, for R > 1 and a given value of z(t) only certain
rules will turn on and contribute to the output.

We could let u(t) = 0, t > 0 and study the stability
of Eq. (11). Instead, we will consider the case where
we use a controller to generate u(f). Assume that we
can measure x(t) and that the controller is another
Takagi—Sugeno fuzzy system with R rules (the same
number of rules as was used to describe the plant) of
the form

an

If &) is A] and #; is A% and, ..., and &, is A,
Then u' = K;z(t)
where K;,i = 1,2,..., R, are 1 x n vectors of control
gains and the premises of the rules are identical to the

premises of the plant rules that were used to specify
Eq. (11). In this case

R
u(t) =3 K& (z(t)a(t). (12)
1=1

If we connect the controller to the plant in Eq. (11)
we get a closed-loop system

£(t) = (LR Ad(e(t) -
+ (S Bita (@(0) (T K& (@) 2()

which is in the form of Eq. (1). We assume that y;
and hence &; are defined so that Eq. (13) possesses
a unique solution that is continuously dependent on
x(0).
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For stability analysis we use the direct method of
Lyapunov. Choose a (quadratic) Lyapunov function

V(z) = z' Pz

where P is a “positive definite matrix” (denoted by
P > () that is symmetric (i.e., P = P'). Given a
symmetric matrix I we can easily test if it is positive
definite. You simply find the eigenvalues of /? and if
they are all strictly positive then P is positive definite.
If P is positive definite then for all = # 0, 2' Pz > 0.
Hence, we have V(z) > 0 and V(z) = 0 only if
xr = 0. Also, if |z| — oo, then V{(z) — nc.

To show that the equilibrium = = 0 of the closed-
loop system in Eq. (13) is globally asymptotically sta-
ble we need to show that V{(x) < 0 for all z. Notice
that

V(z) = 2'Pi + &' Pz

so that since

Si(z(t) = il
§i(x(t) S il ()
we have
Vo) otp | S et
El Inu (Itt))

(Z | Bipi( })) (ZL 1\";;6;@(8))1 i
TR ) J\ SR uit)
TR Al (t))

Z. 1ﬂr($ t))

+(>:, | Bupi(alt )(Z Ly Kyt )))]'PI
E-,;=1m( x(t)) E 1#3 (i))

__._LJ‘P[ZIR]A#-' )ZJ 1“].1(?)
Z:j.:l pilx (U)ZJ—:I ;‘LJ(.‘(!,))

(Z R B (‘.r(t))) (Zj“_ K (e (t) })}
+ Vel - R . s
Z(:] piz(t)) Ej=1 !‘g(-’-(f-))
t [zﬁil Agi(t)) Tt i (a(2)
+x 5 = = =
Z-@:] pi(a(t)) Zj:] “J(-L(t))

R R o t
+(E,-‘;RI Bmz(m(t)))(zj:; Jf{{(:(t)>)} o
Siny wiz@) S\ X mila(t))

+,J.

Now, if we let }°, . denote the sum over all possi-
ble combinations of 1 and o 1250 wen B § =
1,2;. .., R we get

e N Er] Ay “1( ( )“1‘(' (t)]
P = [ S (@O ((t))

" > i BiK s (x(t))p;(x(t)) .,
Zz‘_J‘ pi((t))pes (2(t)) .

o | i A ())m(ﬂr( )
> g k(@ (E))pe(z(t))

Zi.j fii(l'(t))uj(”’(t))

[ 305 (As + BiE ) pa((8) ) (1)) |
S ({0 ((t)

Zv‘.j Bi K (Jﬁ(t})ﬂj (I(f))] r

| Bualdit B K‘) @@,

o Yo k() (x(t))
_lp "Zi.j(-’le‘*'Bih’.y)#i(-"f(f-))ﬂj(fr(t))-
- Yo (@ () (2(t))

(30 (Ait BiK )i (1)) g (2()) *P i
> pae () (x(2)

[Z“‘ N (z(t)) [P(Ai+BiK;)

-1
+ (Ai+BiK;) [Zm )#J(J:(t))} z.

Now, since
(s r(f})u;(l(t))
0 1
ST, mE)usE®) =
we have

(z) <Y o' (P(Ai+BiK))+(Ai+BiK;)'P) z.

Hence, if

#t (P(A;+BiK;)+(Ai+B;K;)'P)z <0, (14)
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then V(z) < 0.
Let

Z = P(A; + BiK;) + (Ai + BiK;)'P.

Notice that since P is symmetric Z is symmetric so
that Z' = Z. Equation (14) holds if Z is a “negative
definite matrix.”” For a symmetric matrix Z we say that
it is negative definite (denoted Z < 0) if 2'Zz < 0
for all @ £ 0. If Z is symmetric then it is negative
definite if the eigenvalues of Z are all strictly negative.
Hence, to show that the equilibrium = 0 of Eq. (13)
is globally asymptotically stable we must find a single
n % n positive definite matrix #* such that

P(A; + B;K;) + (A, + BIK;)'P < 0 (15)

Notice that in Eq. (15) finding the common P ma-
trix such that the R? matrices are negative definite is
not trivial to compute by hand if n and R are large.
Fortunately, “linear matrix inequality™ (LMI) methods
can be used to find P if it exists, and there are fune-
tions in a Matlab toolbox for solving LMI problems
(see the literature overview for some methods).

As a simple example of how to use the stability test
in Eq. (15) assume thatn = 1, R = 2, 4, = —1,
B, =2, Ay = —2 and B> = 1. These provide the pa-
rameters describing the plant. We do not provide the
membership functions as any you choose (provided
they result in a differential equation with a unique so-
lution that depends continuously on =(0)) will work
for the stability analysis that we provide.

Equation (15) says that to stabilize the plant with
the Takagi-Sugeno fuzzy controller in Eq. (12) we
need to find a scalar P > () and gains K and K
such that

foralli = 152, = o Bandy = 152500, H:

P(=142K))+ (—1+2K,)P <0,
P(—142Ky) + (=14 2K3)P <0,
P(—2+ Ky)+(-2+ K,)P <0,
P(=2+ Ky)+(-2+ K2)P < 0.

Choose any P > 0 such as P = 0.5. The stability test
indicates that we need i'; and K> such that iy < 0.5
and Ky < 2 to get a globally asymptotically stable
equilibrium & = 0. If you simulated the closed-loop
system for some 2 (0) # 0 you would find that z — 0
as t — no.

3.2, Analvsis of absolute stability

In this section we will examine the use of the Circle
Criterion for testing and designing to insure the sta-
bility of a fuzzy control system. Our work will differ
from that of [38] and [39] in that we will use a form
of the Circle Criterion that gives sufficient and neces-
sary conditions (in relation to the class of nonlinear-
ities in a sector) for stability. We will use the Circle
Criterion theory found in [24] and [49] to achieve the
desired results. Of course there are other frequency
domain based criteria for stability that can be utilized
for fuzzy control system analysis (e.g., Popov’s Crite-
rion and the multivariable circle criterion [24, 32]).

3.2.1. The Circle Criterion

Figure 8 shows a basic regulator system. In thig
system (5 (s) is the transfer function of the plant and is
equal to C(sI — A)~' B where (4, B, C) is the state
space description of the plant (z is the n-dimensional
state vector). Furthermore, (A, B) is controllable and
(A,C) is observable [18]. The function ®(¢,y), rep-
resents a memoryless, possibly time varying nonlin-
earity (in our case the fuzzy controller) with ®
[0,0¢) x R — N. Even though the fuzzy controller
is in the feedback path rather than the feedforward
path in this system, we will be able to use the same
fuzzy controller described in Section 2 since it rep-
resents an odd function (i.e., ®(—y) = —P(y)). It
is assumed that ®(t,y) is piecewise continuous in ¢
and locally Lipschitz [31]. If @ is bounded within a
certain region as shown in Fig. 9 so that there exist
o, Boa,b, (3 > @, a < 0 < b) for which

ay < ®(t,y) < By (16)

forallt > Oandall y € [a.b] then ® is a “sector
nonlinearity™. If Eq. (16) is true forall y € (—o0, 00)
then the sector condition holds globally and the sys-
tem is “absolutely stable” (i.e., z = 0 is (uniformly)
globally asymptotically stable). For the case where
& only satisfies Eq. (16) locally (i.e., for some a and
b), if certain conditions (to be listed below) are met
then the system is “absolutely stable on a finite do-
main” (i.e., = 0 is (uniformly) asymptotically sta-
ble). Recall that in Section 2 we explain how the fuzzy
controller is often similar to a saturation nonlinearity.
Clearly the fuzzy controller can be sector bounded in
the same manner as the saturation nonlinearity with
either o = 0 for the global case or for local stability
a > (), Lastly, D(a, 3) is a closed disk in the complex
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D,y

Fig. 8. Regulator system.

plane whose diameter is the line segment connecting
the points = + j0 and 3 + ;0.

The Circle Criterion states that with @ satisfying
the sector condition in Eq. (16) the regulator system
in Fig. 8 is absolutely stable if one of the following
three conditions is met:

1. If 0 < a < /3, the Nyquist Plot of G(jw) is
bounded away from the disk D(«, #) and encir-
cles it m times in the counterclockwise direction
where m is the number of poles of (G(s) in the
open right half plane (RHP).

2. If0 =« < 3, G(s) is Hurwitz (poles in the open
LHP) and the Nyquist Plot of G(jw) lies to the
right of the line s = j—,l

3. If @ < 0 < 3, G(s) 1s Hurwitz and the Nyquist
Plot of G(jw) lies in the interior of the disk
D(a, ) and is bounded away from the circum-
ference of D(a, ).

If & satisfies Eq. (16) only on the interval y € [a, b],
then the above conditions ensure absolute stability on
a finite domain [24]. Is is Circle Criterion conditions
such as these that have been used in the past of stabil-
ity analysis of fuzzy control systems. It is important to
note that the above conditions are sufficient conditions
for stability only and hence there is the concern that
they are conservative. However, in [49] it is shown
how the Circle Criterion can be adjusted such that the
conditions are sufficient and necessary; it is this set of
conditions that we will introduce for stability analysis
of fuzzy control systems as it is explained next.

It is necessary to begin by providing some mathe-
matical preliminaries. For each real p £ [1,00), the
set L, consists of functions f(-) : [0,00) — R such
that

fﬂm IF ()P dt < o (17)

y
G(s) >
Let
fT(t)';{ (-};"(t)e %itt$ T (18)

Let the set Ly, the extension of Ly, consist of all func-
tions f7 : [0,00) — R, such that f7 € L,, for all finite

T'. Finally, let
o0 1/p
176 [ / If(tJI"dt] a9
0
1fC) lme = | £C)r Il (20)

If R is a binary relation on L,,. then R is said to be
Ly-stable if

(z,y) ER,z€ Ly =>y€L,. (21)

R is Ly-stable with finite gain (wfg) if it is L,-stable,
and in addition there exist finite constants v, and by,
such that

(r,y)eR, -EELp = ”UHPSF}’p“mnp + bp' (22)

R is Ly-stable with finite gain and zero bias (wb) if it
is L,-stable, and in addition there exists a finite con-
stant -y, such that

(r,y) ER, T € L;n = ”.T)'”p < 'Yp”l'”p . (23)

For more details see [49].

Assume that we are given the regulator system
shown in Fig. 8 (with G defined as above) except that
now P is in general defined by ® : Lo, — Lg.. @
belongs to the open sector («, 3) if it belongs to the
sector [ + €, 3 — €] for some ¢ > 0 with the sector
bound defined as

@z — [(B+a)/2]z|T2 < (B-0a)/2||z||T2,
vT > O,VI- & Lzﬁ.

In actuality, this definition of the sector [a, ] is con-
sistent with our previous definition in Eq. (16) if &
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Fig. 9. Sector bounded nonlinearity.

is memoryless. Next, we state a slightly different
version of the Circle Criterion that we will call the
Circle Criterion with Sufficient and Necessary Condi-
tions (SNC).

For the system of Fig. 8 with & defined as @ :
Lo — Lo, which satisfies Eq. (24) and «, 3 two
given real numbers with o < [ the following two
statements are equivalent [49]:

1. The feedback system is Ly-stable with finite gain
and zero bias for every ® belonging to the sector
((.1, ,c';‘)

2. The transfer function G satisfies one of the fol-
lowing conditions as appropriate:

(a) If @3 > 0 then the Nyquist plot of G(jw)
does not intersect the interior of the disk
D(a, 3) and encircles the interior of the
disk D(a, 3) exactly m times in the counter-
clockwise direction, where m 1s the number
of poles of (G with positive real part.

(b) If & = 0, then G has no real poles with pos-
itive real part, and ReG(jw) > *% , Ve

(c) If @3 < 0, then G is a stable transfer func-

tion and the Nyquist plot of G(jw) lies in-
side the disk D(a, 3) forall w.

If the conditions in Statement 2 are satisfied, the sys-
tem is Lj-stable and the result is similar to the Cir-
cle Criterion with sufficient conditions only. Nega-
tion of Statement 2 infers negation of Statement 1 and
we can state that the system will not be Ls-stable for
every nonlinearity in the sector (it may not be appar-
ent which of the nonlinearities in a sector will cause
the instability).

3.2.2. Example

For an example we will use a plant with transfer
function G(S) = m. This plﬂ.ﬂt is cho-
sen because it illustrates the problems with stabil-
ity that can arise when designing fuzzy controllers.
The Nyquist Plot of G(jw) for this plant is shown in
Fig. 10. It would be impossible to choose A and B for
the fuzzy controller without more information about
the physical system that the above transfer function
represents. However, with conditions such as ampli-
fiers whose gain, K, is limited or performance speci-
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Fig. 10. Nyquist plot of example plant.

fications of some type, a possible fuzzy controller for
this system (i.e., one that some expert could construct)
would be one with A = 0.5 and B = 16.6667. How-
ever, if we simulate this system with initial conditions
2(0) = [0 0 2]7 the system has sustained oscillations
as shown in Fig. 11. We can see that the ad hoc de-
sign procedure for fuzzy controllers can cause prob-
lems that cannot, perhaps, be foreseen via an intuitive
analysis. If we consider the fuzzy controller as a non-
linearity, ¢, we can find a sector («, /) in which @
lies and use the Circle Criterion to determine why the
instability is occurring and perhaps determine how to
tune the fuzzy controller so that it does not cause sus-
tained oscillations. Figure 12 shows the fuzzy con-
troller nonlinearity and we can see that it lies in the
sector (0, 33.8). Because a = 0 we will use the sec-
ond condition of the Circle Criterion/SNC from [49].
For our current system the plant has poles at —6.2648
and —0.3676 £ j1.5031. However, by looking at the
Nyquisl plot in Fig. 10 we can see that a line drawn
at — = —0.0296 intersects the Nyquist plot and
vmlates the second part of the condition. Hence the
Circle Criterion/SNC predicts that not all of the non-
linearities within this sector will be stable. We have
found a fuzzy controller which verifies this statement
by producing sustained oscillations in the closed loop
system as shown in Fig. 11. Next we use condition (b)
of the Circle Criterion/SNC to provide ideas on how
to tune the fuzzy controller.

To meet the second part of the condition, we will
have to adjust # so that —% < —0.0733, (i.e., so
that 3 < 13.64). As there are many different choices
for A and B so that the fuzzy controller will fit in-
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Fig. 11. Oscillations from the fuzzy control system.
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Fig. 12. The sector bounded nonlinearity ®.

side the sector, more about the system would have to
be known (e.g. what the saturation limits at the in-
put of the plant are) to know whether to tune A or
B. If we desired to change A and not B then we
would leave B = 16.6667 and make A > 1.222
so that % < 13.64. If we desired to change B
and not A then we would leave A = 0.5 and make
B < 6.82. As an example, we will choose the first
case, leave B = 16.6667, and change A to 1.3. A
simulation of the resulting fuzzy control system with
2(0) = [0 0 2] is shown in Fig. 13. Notice that there
is no sustained oscillation and we have used the Cir-
cle Criterion/SNC to redesign the fuzzy controller to
avoid the instability.
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Fig. 13, Re-designed fuzzy control system.

4. Analysis of steady state tracking error

A terrain following, terrain avoidance aircraft con-
trol system uses an altimeter to provide a measure-
ment of the distance of the aircraft from the ground
to decide how to steer the aircraft to follow the earth
at a pilot-specified height. If a fuzzy controller is
employed for such an application and it consistently
seeks to control the height of the plane to be lower
than what the pilot specifies there will be a steady state
tracking error (an error between the desired and actual
heights) that could result in a crash. In this section
we show how to use the results in [40] for predicting
and eliminating steady state tracking errors for fuzzy
control systems so that such problems can be avoided.

4.1. Theory

We must make several assumptions. First the sys-
tem is assumed to be of the configuration shown in
Fig. 14 where r, e, u, and y belong to L. and ®(t, ¢)
is the SISO fuzzy controller described in Section 2.
We will call e, = lim,_,, e(t) the steady state track-
ing error. G(s) has the form

p(s)

G(s) = 5°9(8)

(25)

where p, a nonnegative integer, is the number of
poles of G(s) at s = 0, and p(s) and s7¢g(s) are
relatively prime polynomials such that deg(p(s)) <
deg(s”q(s)). Furthermore, we assume that (®z)(t) =
nlz(t), t = 0, for z € L., wheren : R — R,

n(0) = 0, and 7 is bounded by o and 3 according to

S T]((].}—'U{b} 3

</ (26)
a—b

for all @ # b. Notice that this sector bound is different
from the sector bound in Section 3.2. This new sector
bound is determined by the maximum and minimum
slopes of @ at any point and is sometimes not as easy
to determine as the graphical sector bound of Section
3.2,

Finally we assume that one of the following three
Circle Criterion type conditions is met:

1. 0 < @ < 3, and the locus of G(jw) for —eo <
w < 00, with the usual Nyquist-locus indenta-
tions where needed:

(a) is bounded away from the circle (') of radius
% (a—'—/~1) centered on the real axis of the
complex plane at [—3 (™! + 371),0].

(b) encircles ' in the counterclockwise direc-
tion n, times where n, is the number of
poles of GG(s) with positive real parts.

2. 0 =a < [, G(s) has no poles in the open Right
Half Plane, and Re[G(jw)] > =3~ for all real
w for which Re[G(jw)] is finite.

3. a < 0 < 3, G(s) has no poles in the closed
Right Half Plane (RHP), and the locus of G(jw)
for —oo < w < oois contained within the circle
(', of radius (37" — a~ ') centered on the real
axis of the complex plane at [— 5 (@~ +371),0].

To predict the value of e, several definitions must
be made. First, an “average gain” for @, ¢y, is defined
asey = %(a + (#) and we assume that cg # 0. In [40]
the authors show that for this ¢y, 1 + coG(s) # 0
for Re(s) > 0. Therefore, the rational function
H(s) = 5 ﬁj(g.)(s) . at all points s at which G/(s) is reg-
ular, is strictly proper and has no poles in the closed
RHP. Defined in this manner, H(s) is the closed loop
equation for the system shown in Fig. 14 with ¢g as an
average gain of ®. Finally, we will define ) : ® — R
by n(a) = nla) — cpa, @ € R. That is, 7 is the dif-
ference between the actual value of @ at some point a
and a predicted value found by using the average gain,
[

Suppose that the above assumptions are met. It is
proven in [40] that for each v+ € R, there exists a
unique £ € R such that

v =&+ H(0)7(€) (27)
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Fig. 14. The steady state error system configuration.

and

§= ;.-11“; 37 (28)
where

Srv1 =1 — H(0)7(Ex) (29)

and & € M is arbitrary (Eq. (29) is an iterative algo-
rithm that will be used to find ¢, ). Furthermore, if we
define ¢ as

e = é(g’j—a)|H(0)| (30)

and assume that ¢ < 1 then the equation

k

€ —&| < €0 — v+ H(O0)7(&)]. k > 1, 31)

(&

1 —ic
must be true for the iterative algorithm, Eq. (29) to
converge. Finally, let © : ® — R be the map that
takes v into £ (i.e. O(v) = £). Note that this map is
defined by the above algorithm.

The Theorem for finding the steady state error of a
fuzzy control system from [40] is as follows:

Theorem. Assuming that all the described assump-
tions are satisfied:

1. If v approaches a limit | as t — oc then egc =
limy .o €(t) exists. Moreover, s # 0 if and
only if 1l # 0 and p = 0, and then e, = O(7)

{
where ¥ = TFey G0}
2. Assuming that
v
r(t) =Y a;t!, t>0 (32)
=0
in which the a; arve real, v is a positive integer,
and a,, # 0, the following holds:
(a) € is unbounded if v > p.

(b) if v < pthen eapproaches a limitast — oo.
If v = p this limit is ©(v) where
_auvlq(0)
cop(0)
If v < p then the limit is zero.

(33)

An examination of the above Theorem reveals that
in actuality the proposed method for finding the steady
state error for fuzzy control systems is similar to the
equations used in conventional linear control systems.
The Theorem performs the function of identifying an
appropriate equation for e,, based on the input type
and the “system type”. Notice that the two equations
for 7 in the Theorem are analogous to the equations
for the “‘error constants™ [18], ﬁ, K%.’ and ,%ﬂ and
provide an initial estimate for e,,. The final prediction
of ¢, is found by using the iterative equation defined
by (29). This equation uses the initial guess, v and
7 (the difference between the actual value of @ and
the estimate using ) to iteratively determine e, if it
exists. In our next section we will apply this process
to several examples. Then we will show how to use
the result in design.

4.2. Example

For an example we will examine a plant of the form
Gl(s) = ?‘T;? . First we must choose a fuzzy con-
troller and determine the « and (J describing the sec-
tor in which it lies. We will use the fuzzy controller
whose I/0 map is shown in Fig. 15. To find a and 3
numerically we could perform an exhaustive search by
inserting all possible values of @ and b into the equa-
tion o < W < [ and determining the max-
imum and minimum values. However, it is obvious
from the horizontally flat section of the 1/O map that
o must be 0. Furthermore, since there are no large os-
cillations at any point of the I/0 map, a fairly accurate
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Fig. 15. /0 map of a fuzzy controller.
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Fig. 16. Nyquist plot.

graphical estimate of 7 = 1 can be made. Remem-
ber, that due to the “<” sign, the sector equation does
not require a tight upper bound; we would still meet
the requirements if we chose a number that is obvi-
ously much larger than the actual maximum. One of
the assumptions for this procedure to work is that our
system must satisfy one of the Circle Criterion type
conditions. With o = (), we must satisy condition 2.
Our plant has no poles in the RHP and by examining
the Nyquist plot of G(jw) shown in Fig. 16 we see
that since J = 1 then the second part of the condition
is also satisfied. All the assumptions are now valid.

With @ = 0 and 7 = 1 we can solve for ¢ =
0.5(cx + 3) = 0.5. We find

. Gls) 1
T 1+¢0G(s)  s2+4s+35

H(s) (34)

final value = 3333
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Fig. 17. Step response.

and H(0) = 3= = 0.2857. All that remains is to
determine what type of input we will have, apply the
Theorem from [40] to determine -, and then solve the
recursive equation from (29). If we choose a step input
of size 3, then we will use condition 1 of the Theorem.
The input will have a limit | = 3ast — ocand p = 0.
Therefore ¢, exists, 1s not equal to zero, and can be
found from
l

1 + ¢pG(0)

We now have the values v = 2.5714, ¢y = 0.5, and
H{0) = 0.2857 and can recursively solve the equa-
tion £y = v — H(0)7(&x) to find es,. When these
calculations are made, we find that our steady state er-
ror for a step of size 3 will be 2.6667. In Fig. 17 we
can see that a simulation of this system does indeed
have the predicted steady state error of 2.6667.

If this steady state error was considered to be ex-
cessive, it would be convenient to be able to redesign
our fuzzy controller using the steady state error pre-
diction procedure as part of the design process. Intu-
itively, we would expect that if we increased the “gain
of the fuzzy controller”, the steady state error would
decrease. In terms of the e, prediction procedure this
would mean changing « and 3. Because of the inher-
ent saturation of the fuzzy controller, o will always
equal 0. Therefore, we will have to adjust by chang-
ing /3 only. If the fuzzy controller is changed so that
it has the I/0 map shown in Fig. 18, then 4 = 20 and
egs = 0.3911. Further simulations show these pre-
dicted values of e, to be valid.

If we desire to examine the response of this sys-
tem to a ramp input, we must use condition 2 of the

es5=8(7y)= O )= 0©(2.5714). (35)
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Theorem and parameterize r(t) in terms of r(f) =
S i_pa;t!, t > 0. Foraramp input ap = 0, a; = the
slope of the ramp, and v = 1. No further information
is need as part *“a” of condition 2 states that for v > p
(v = 1, p = 0 for this case) that e(t) is unbounded.
The ramp response in Fig. 19 shows this prediction
to be accurate: e(t) grows without bound. Unfor-
tunately, we cannot change this by redesigning our
fuzzy controller because we cannot change the value
of p (the plant type) by changing the fuzzy controller
(unless, of course, we added a dynamic pre- or post-
compensator). This clearly exhibits an inherent limi-
tation on fuzzy control that is sometimes overlooked
in the heuristic construction of the fuzzy controller.
The conventional solution to the problem of un-
bounded error to a ramp is to add an integrator to

Imag Axis
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Fig. 20. Nyquist plot for example with integrator.

change the system type. To show the steady state er-
ror prediction capabilities of the procedure from [40]
we will do this for our current plant. With the addi-
tion of an integrator, we now use G(s) = w75
This plant has no poles in the RHP but we see from
the Nyquist plot in Fig. 20 that the conditions are only
satisfied when 3 < 2.25. Therefore we will use the
original fuzzy controller from above with @ = 0 and
[ = 1. Once again we must use condition 2 from the
Theorem since a ramp input results in an unbounded
e(t). However, since p = 1 = v we can use part “b”
of this condition and find e,,. The equation for 7 in
this case is 7 = '%;%?J If we choose a ramp with
slope 0.1, then ¢ = 0.5, v = 1, a3 = 0.1, g(0) = 3,
p(0) = 1, and v = 0.6. The final value we need is
H(0) which for this case is 2. Up until now, the con-
vergence requirement ¢ < 1 has been met. However,
for these values of a, 3, and H(0), ¢ =1 and Eq. (29)
(the iterative equation) will oscillate and not converge.
It is easy to show that this will be true any time p > 0
and o = (). Pole shifting [24] can be useful to change
« but it cannot help meet the ¢ < 1 requirement (this
can be seen by simple analysis of the effect of pole
shifting on the conditions for convergence of the al-
gorithm (29)). To overcome the problem with conver-
gence of the algorithm in Eq. (29) we will move the
pole of G{s) which is located at zero slightly into the
left half plane so that p = 0, calculate the new H(0)
for this system (call it H(0)), analyze the steady state
error for the original system using F(0), and use the
results to predict e, for the actual system. We move
the poles of G/(s) by inserting K into the system as
shown in Fig. 21. For this system the adjusted plant,
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Fig. 21. System adjusted for convergence.

(4 (s), 1s found by

G(s)

Cls) =TT kG -

(36)
By choosing K so that p = () we can use the same
values of « and 4 but ¢ will be less than 1 and the
iterations in Eq. (29) will converge.

For the current system we will choose K = 0.01
forwhich G,(s) = m and p = 0. For this

plant (0) = 1.9608 and ¢ = 0.9804 < 1. The val-
ues we need to find e, are ¢y, H(0), and +. Because
we have not changed a or /3, ¢, has not changed and
still equals 0.5. We have already calculated the new
H (0) = 1.9608 and only lack . To find the proper
value for v we must return to the original plant, G (s),
and use the corresponding values of p(0) and g(0) in
the equation for « found in part 2b of the Theorem (no-
tice that v would not exist for G; for a ramp input as
p > v). Therefore v is also the same as before and is
equal to 0.6. We can now use the Eq. (29) to estimate
£ss. The estimate for these values is ey, = 0.3028.
Figure 22 shows a plot of the ramp response for this
system. The actual steady state error from the simula-
tion is 0.3003. Our prediction had 0.5% error, but this
could be lowered by using smaller values of K. For
example, for K = 0.001 we obtain e, = 0.3001; a
closer estimate.

5. Describing function analysis

Autopilots used for cargo ship steering seek to
achieve a smooth response by appropriately actuating
the rudder to steer the ship. The presence of unwanted
oscillations in the steering angle results in loss of fuel
efficiency and a less comfortable ride. While such os-
cillations, sometimes called “limit cycles™, result from
certain inherent nonlinearities in the control loop, it is
possible to carefully construct a controller so that such
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Fig. 22. Ramp response for plant with integrator.

undesirable behavior is avoided. In this section we in-
vestigate the use of the describing function method for
the prediction of the existence, frequency, amplitude,
and stability of limit cycles. We will first present de-
scribing function theory following the format in [42].
Secondly, we will use several examples to show how
describing function analysis can be used in the design
of SISO and MISO fuzzy controllers of the form de-
scribed in Section 2. Finally, we will use describing
function analysis to design fuzzy controllers for an un-
derwater vehicle and a tape drive servo.

5.1. Theory

Since limit cycles are by definition periodic they
can be described as a sum of sinusoids. Further-
more, since almost all physical systems are low pass
systems, the higher frequency sinusoids are filtered
out and only the lower frequency components remain.
This allows us to model the limit cycle as a simple si-
nusoid and based upon the system equations predict
when such a sinusoid might exist in the system.



96 D.F. Jenkins and K.M. Passino / An introduction to nonlinear analysis of fuzzy control systems

() (te)

u(t) ylt)

G(s)

]

Fig. 23. Nonlinear system for describing function analysis.

5.1.1. Basic assumptions

There are several assumptions that need to be sat-
isfied for the describing function method. These as-
sumptions are as follows:

1. There is only a single nonlinear component and
the system can be rearranged into the form shown
in Fig. 23.

2. The nonlinear component is time-invariant.

3. Corresponding to a sinusoidal input e(t) =
sin(wt), only the fundamental component w1 ()
in the output u(¢) must be considered.

4. The nonlinearity @ (which will represent the
fuzzy controller) is an odd function.

The first assumption requires that nonlinearities asso-
ciated with the plant or output sensors be rearranged
to appear in ® as shown in Fig. 23. The second as-
sumption originates from the use in this method of the
Nyquist criterion which can only be applied to linear
time-invariant systems. The third assumption implies
that the linear component following the nonlinearity
has characteristics of a low pass filter, i.e.

|G(jw)| >

G(njw)| forn=2,3,... (37)

and therefore the higher-frequency harmonics, as
compared to the fundamental component, can be ne-
glected in the analysis. This is the fundamental
assumption of describing function analysis and rep-
resents an approximation as there will usually be
higher-frequency components in the signal from the
nonlinearity. The fourth assumption simplifies the
analysis of the system by allowing us to neglect the
static term of the Fourier expansion of the output.
While relaxation of the above assumptions has been
studied extensively [5], we focus here only on situa-
tions where such assumptions are satisfied.

5.1.2. Defining and computing the describing
function
For an input ¢(t) = Csin(wt) to the nonlinearity,
®(e), there will be an output u(t). This output will of-
ten be periodic, though generally non-sinusoidal. Ex-
panding «(t) into a Fourier series results in

u(t) = % - Z[an cos(nwt) + by, sin(nwt)].  (38)

n=1

The Fourier coefficients (a;’s and b,’s) are generally
functions of C' and w and are determined by

o = [ utdwn), (39)
e "= é'/w u(t) cos(nwt)d(wt), (40)

By, = l/‘Tr u(t) sin(nwt )d(wt). (41)

w —-m
Because of our assumptions ag = 0, n = 1, and

w(t) = uy (t) = aj cos(wt) + by sin(wt)

= M(C,w)sin(wt + ¢(C,w)) e

where

M:RxR"—=®R (43)
and

M(C.w) = \Jad + B (44)
and where

p:RxRT =R (45)
and

#(C,w) = arctan(>2) . (46)

by

From the above equations we can see that the funda-
mental component of the output corresponding to a
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sinusoidal input is a sinusoid of the same frequency
and can be written in complex representation as

ut = M(C,w)e! WO = (b 4 jar et (47)

We will now define the describing function of the non-
linear element to be the complex ratio of the funda-
mental component of the nonlinear element by the in-
put sinusoid, i.e.

g

N(Cw)==———
) Csin(wt)
(48)

M(C,w)ellwt+#(Cw) |
- Celvt - C

By replacing the nonlinear element, ®(¢), with its
describing function, N(C,w), the nonlinear element
can be treated as if it where a linear element with
a frequency response function. Generally, the de-
scribing function depends on the frequency and am-
plitude of the input signal. However for some special
cases this is not the case. For example, if the non-
linearity is time-invariant and memoryless, N(C,w)
is real and frequency independent. For this case,
N(C,w) is real because evaluating Eq. (40) gives
ay = (. Furthermore, in the same equations, the in-
tegration of the single-valued function u(t) sin(wt) =
|C'sin{wt)] sin(wt) is done for the variable wt, imply-
ing that w does not explicitly appear in the integration
and the function N(C,w) is frequency independent.

There are several ways to compute describing func-
tions. The describing function can be computed an-
alytically if u = ®(e) is known and the integrations
to find a; and b, can be easily carried out. If the /0
relationship of @(e) is given by graphs or tables, then
numerical integration can be used. The third method,
and the one which we will use, is “experimental eval-
uation™. We will excite the input of the fuzzy con-
troller with sinusoidal inputs, save the related outputs,
and then use the input and output waveforms to de-
termine the gain and phase shift at the frequency of
the input sinusoid. By varying the amplitude and fre-
quency (or just the amplitude if the fuzzy controller
is SISO, time-invariant, and memoryless) of the input
sinusoid, we can find u; at several points and plot the
corresponding describing function.

(b1 + jay).

5.1.3. Predicting the existence and stability of
limit cveles
In Fig. 23 if we replace ®(e) with N(C',w) and as-
sume that a self-sustained oscillation of amplitude '

and frequency w exists in the system then for r = 0,
y # 0, and

Gliw)N(C,w)+1=0. (49)

This equation, called the harmonic balance equation
in [24], can be rewritten as
Gjw) = ! 50
(Jw) = NC.o) " (50)
If any limit cycles exist in our system, and the four
assumptions are satisfied, then the amplitude and fre-
quency of the limit cycles can be predicted by solv-
ing the harmonic balance equation. If there are no
solutions to the harmonic balance equation then the
system will have no limit cycles (under the above as-
sumptions).

However, solving the harmonic balance equation is
not trivial; for higher order systems the analytical so-
lution is very complex. The usual method, therefore,
is to plot G'(jw) and —1/N(C.,w) on the same graph
and find the intersection points. For each intersection
point there will be a corresponding limit cycle. The
amplitude and frequency of each limit cycle can then
be determined by finding the particular C' and w that
give the value of —1/N(C, w) and G (jw) at the inter-
section point.

Along with the amplitude and frequency of the limit
cycles, we wish to determine whether the limit cycles
are stable or unstable. A limit cycle is considered sta-
ble if the system moves to the limit cycle when it is
within a certain neighborhood of the limit cycle in the
state plane. Therefore once the system is in a limit
cycle, the system will return to the limit cycle when
perturbations move the system off of the limit cycle.
For an unstable limit cycle there is no neighborhood
in the state plane within which the system moves to
the limit cycle when the system starts near the limit
cycle. Instead the system will move away from the
limit cycle. Therefore if a system is perturbed from
an unstable limit cycle the oscillations will either die
out, increase until the system goes unstable or move
to a stable limit cycle. The stability of limit cycles can
be determined from the same plot used to predict the
existence of the limit cycles and is determined by the
following criterion from [42]:

Limit Cycle Criterion.  Each intersection point of the
curve G(jw) and the curve —1/N(C', w) corresponds
to a limit cycle. 1If points near the intersection and
along the increasing-C' side of the curve —1/N(C'\, w)
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Fig. 24. N(C,w) for a fuzzy controller with A = 0.2 and B =
0.1.

are not encircled by the curve G(jw), then the cor-
responding limit cycle is stable. Otherwise, the limit
cycle is unstable.

5.2. SISO fuzzy controller example

Our example will consist of a fuzzy controller with
A =0.2and B = 0.1 and a plant with transfer func-
tion G(s) = m configured in the form of
Fig. 23. To predict the limit cycles of this system us-
ing describing function analysis, we must first find the
describing function of the fuzzy controller. Without
using a set of equations for the fuzzy controller we
have no choice but to find the describing function ex-
perimentally. We do know that the fuzzy controller
is SISO, odd, time-invariant, and memoryless. There-
fore, the describing function is frequency independent
and can be found by varying the amplitude only. Us-
ing a sinusoidal input with constant frequency and dif-
ferent amplitude for each data point, we construct the
describing function shown in Fig. 24 (N(C') in this
figure represents a variable gain dependent on e(t)).
The next step in our procedure is to plot G'(jw) and
—~1/N(C,w) on the same plot and find the intersec-
tion points. This plot is shown in Fig. 25 and there
is an intersection point at —5 + j0. This point cor-
responds to €' = 0.636 and w = 1 rad/s. Therefore
there will be a limit cycle with amplitude 0.636 at a
frequency of 1 rad/s. From the same figure, we can
determine that this limit cycle is stable because the
points near the intersection and along the increasing-
C side of the curve —1/N(C,w) are not encircled by

1o = = e
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Fig. 25, Plot of G(jw) and —1/N(C. w).

the curve G'(jw). The last step of this process is to ver-
ify by simulation that the limit cycle does exist. This
simulation with r(¢) = 1 is shown in Fig. 26. We can
see that the limit cycle does exist though the ampli-
tude of 0.62 and frequency of 0.98 rad/s are slightly
different then predicted.

Now that we have predicted the existence of a limit
cycle for our system, we desire to redesign the fuzzy
controller so that there are no limit cycles. Examining
Fig. 25 again, we see that if —1/N(C,w) < —5 there
would be no intersection point and no limit cycle. This
means that we must change the fuzzy controller so that
N(C,w) < 0.2. From Fig. 24 we can determine that
the maximum value of N(C,w) is equal to B/A of
the fuzzy controller. Therefore if we change the fuzzy
controller so that B/A < 0.2 the conditions will be
met. We will choose A = 0.6 and B = 0.05. The
plot of G(jw) and —1/N(C, w) in Fig. 27 shows that
now there is no intersection point and Fig. 28 shows
that there is no limit cycle in the simulation. We were
successful in using describing function analysis to re-
design our fuzzy controller to eliminate a limit cycle.
Notice however, that we have also changed the system
performance by increasing the rise time.

3.3, MISO fuzzy controller example

All of our describing function analysis to this point
has been for SISO fuzzy controllers whose describ-
ing functions are not dependent on w. However, it is
important that we also examine how this type of anal-
ysis can be applied to MISO fuzzy controllers. While
for a MISO fuzzy controller the basic theory is still
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Fig. 26. Simulation to verify existence of limit cycles.
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Fig. 27. Plot of G(jw) and —1/N(C, w).

the same, there are several differences in determin-
ing and using the describing function. First, the de-
scribing function will be dependent on both €' and w.
Because of this, when we experimentally determine
N(C,w) we have to find not only the amplitude of
the fundamental of the output waveform but also the
phase of the fundamental for inputs of different am-
plitude and frequency. Methods for doing this can be
found in [5]. This also means that there will be more
lines to plot as we will have to plot —1/N(C,w) as
C' changes for each value of w, i.e. there will be a
curve for each value of w for which N(C,w) is cal-
culated. Second, not all intersections of G(jw) and
—1/N(C,w) will be limit cycles. For an intersection
to predict a limit cycle the values of w for G(jw) and
—1/N(C,w) at the intersection must be the same. It
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Fig. 28. Simulation of system with redesigned fuzzy controller.

can be seen that, as would be expected, the limit cy-
cle prediction procedure using describing functions is
slightly more complex for MISO systems. However,
with the adjustments mentioned above the procedure
follows the same format as before. This will be shown
in the following example.

The plant for our example has the transfer function
G(S) = {s+1)?/s* . Our fuzzy controller is the two
input fuzzy controller with inputs e and é described in
Section 2 with parameters A, B3, D. 1t is our desire
to use describing function analysis to help us choose
the parameters A, B, and D for the fuzzy controller
such that no limit cycles occur. Our first attempt will
be with A = B = D = 1. To determine if there
will be any limit cycles when this controller is used
with our current plant, we will first have to determine
N(C,w) for the controller. We will experimentally
determine the describing function for 0 < C < 10
andw = 1, 2, 3, 4, 5, 6, 7, 8 9, 10, 20, 30, 40,
50, 60, 70, 80, 90, and 100. We then plot G(jw) and
—1/N(C,w) on the same plot and search for intersec-
tion points. This plot is shown in Fig. 29. Notice that
there are several intersection points. However, only at
the intersections at points 1 and 2 is w the same for
G(jw) and —1/N(C,w). Therefore these are the only
points that correspond to solutions of the harmonic
balance equation and therefore limit cycles. At point
1, w = 0.97 rad/s and C = 2.8. However, because
G(jw) has several encirclements at infinity, point 1
is encircled and therefore represents an unstable limit
cycle and the amplitude will not be 2.8. At point 2,
w = 1.14 and C' = 1.9 but once again this is an un-
stable limit cycle due to the encirclements at infinity.
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Fig. 29. Plot of G(jw) and —1/N(C,w) for A= B=D=1.
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Fig. 30. Simulation with A = B=D = landr = 5.

Therefore we can predict that there are two possible
limit cycles for the system. A simulation of this sys-
tem with r = 5 is shown in Fig. 30. It can be seen that
an unstable limit cycle does indeed exist.

To remove the limit cycles we must change the
controller so that —1/N(C,w) no longer intersects
G(jw). For the SISO fuzzy controller we accom-
plished this by picking A/B less than the value of
Re|G(jw)] when G(jw) crosses the real axis. How-
ever, for our MISO controller —1/N (', w) does not
lie along the real axis and we have the extra parameter,
D, which also affects the describing function. We will
proceed by choosing values for A, B, and D and then
checking the plot of G(jw) and —1/N(C',w) for in-
tersection points. Our first attempt will be for A = 3,
B = 1, and D = 0.1; we hope that these values

Imag Axis

Real Axis

Fig. 31. Plot of G(jw) and —1/N(C,w) for A = 3, B = 1, and
D=0}

will move —1/N(C,w) to the left of G(jw). It can
be seen in Fig. 31 that these values do not give the
desired result and that a limit cycle is still predicted.
Next we willtry A = 1, B = 10, and D = 0.1. Fig-
ure 32 shows that for this controller we again have a
predicted limit cycle. However, the intersection oc-
cursnotat C' = 2.8 or C = 1.9 but at C = 33.3; for
r < 33.3 the system will be stable. If we simulate our
system with this fuzzy controller and r = 5 we obtain
the result shown in Fig. 33. The system is stable for
r = 5. However, from further simulations we find that
for rr = 25 and greater the system enters an unstable
limit cycle. If larger values of r- are anticipated a fuzzy
controller will have to be found for which there are no
intersections of (7(jw) and —1/N(C,w) at any point.

6. Concluding remarks

Overall, in this survey paper we have provided a tu-
torial introduction to nonlinear analysis of fuzzy con-
trol systems. In particular we have introduced and
provided tutorial examples for (i) stability analysis,
(i1) prediction of steady state tracking capabilities, and
(iii) prediction of limit cycle amplitude, frequency,
and stability. The approaches to nonlinear analysis
provide convenient techniques to verify and certify
fuzzy control systems and can often provide insights
into how to design fuzzy controllers. In relation to
work previously done in this area we contribute the
following: (i) minor extensions to the work done in
[4, 13, 14, 17, 20, 21, 26-28, 38, 39] by applying the
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Fig. 33. Simulation with A = 1, B = 10,and D = 0.1.

Circle Criterion with sufficient and necessary condi-
tions for stability from [49] to fuzzy control systems,
(ii) introduction of the steady state error prediction
method for systems with sector bounded nonlineari-
ties from [40] and application of it to fuzzy control
systems, and (iii) minor extension to the work of [25]
by using describing functions found experimentally
from the actual fuzzy controller rather than from mod-
els (simultaneous to and independent of the work done
in [6]).

It is important to note that there are limitations to
the approaches that we survey in this paper. In gen-
eral, except for Lyapunov’s methods in Section 3, we
have only examined linear plant models or nonlinear
plants that can be manipulated to be in the form of

Fig. 8. While the results in Sections 3.2, 4, and 5
can certainly be applied to models linearized about
operating points in a nonlinear system, such results
are only local in nature. Furthermore, we have lim-
ited ourselves throughout the entire paper to SISO and
MISO fuzzy controllers (except in the Lyapunov ap-
proaches). In addition to these general limitations,
there are also limitations specific to each section. In
Section 3.2 on absolute stability we have only exam-
ined the SISO fuzzy controller and not the MISO case
(of course extension to the multivariable case is not
difficult using, e.g., the development in [24]). Further-
more, although the Circle Criterion conditions are suf-
ficient and necessary, the necessary conditions are for
a class of nonlinearities and do not identify which of
the nonlinearities (i.e., which fuzzy controller) within
the class will cause the system to become unstable.
In Section 4 the circumvention of the convergence
problem by moving poles requires that we make the
plant model a less reliable representation of the plant.
Our describing function technique in Section 5, even
though it can be applied to SISO and MISO fuzzy con-
trollers and nonlinear plant models, is limited by the
fact that the use of the approach for more than three
inputs to the fuzzy controller becomes prohibitive.

To address these and other problems we suggest the
following directions for further research:

— expansion of all the presented procedures to a
wider class of nonlinear plants where a mathe-
matical characterization of the fuzzy controller
is used (while work along these lines has been
addressed in [27, 28] we utilize a graphical ap-
proach to nonlinear analysis throughout the pa-
per where we, e.g., plot the I/O map of the fuzzy
controller and read off pertinent information such
as the sector bounds, or use a graphical technique
for describing function analysis®);

— development of a method for mathematically cal-
culating the describing function for a wide class
of fuzzy controllers which have different mem-
bership functions, rule-bases, inference strate-
gies, and fuzzification and defuzzification tech-
niques;

*We feel that the incorporation of graphical technigues for the non-
linear analysis of fuzzy control systems offers: (i) a more intuitive
approach that ties in better with the fuzzy control design procedure,
and (i1) some of the same advantages as have been realized in classi-
cal control via the use of graphical techniques (such as the Nyquist
plot).
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— investigation of extending the results of [40] to

the MIMO case for analysis of steady state er-
rors;

development of a convergence algorithm for the
steady state tracking analysis procedure of [40]
that will converge fora« = 0 and p > v;

further development of the “method of equivalent
gains” for the design of fuzzy control systems
(initial work in this area is contained in [22]);
determination of how to use all the analysis ap-
proaches to gain insights into tuning individual
membership functions (e.g., their shapes); and
exploration of the use of the small gain theorem
[24] and stability analysis results from variable
structure control and differential geometric meth-
ods [24, 49] for fuzzy control systems (see, e.g.,

[33]).

Overall, it is hoped that this survey/tutorial paper
serves (i) to provide an introduction to the important
area of nonlinear analysis of fuzzy control systems
and (ii) to motivate researchers to utilize rigorous en-
gineering evaluations for the verification and certifica-
tion of fuzzy control systems when this is dictated by
the application,
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