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In an artificial intelligence (Al) planning system the planner generates a sequence of actions
to solve a problem. Similarly, the controller in a control system produces inputs to a dynami-
cal system to solve a problem, namely the problem of changing a system’s behavior into a
desirable one. A mathematical theory of Al planning systems that operate in uncertain,
dynamic, and time-critical environments is not nearly as well developed as the mathematical
theory of systems and control. In this paper relationships and a detailed analogy between Al
planning and control system architectures and concepts are developed and discussed. These
results are fundamental to the development of a mathematical theory for the modeling, analy-
sis, and design of Al planning systems for real-time environments.

INTRODUCTION

In an artificial intelligence (AI) planning system the planner generates a
sequence of actions to solve a problem. It is a type of expert system since it
emulates the way in which human experts represent and reason about abstract,
uncertain information to solve a problem in a narrow field of expertise (Char-
niak and McDermott, 1985). The essential ideas in the theory of Al planning
have been developed and reported in the literature. There is, however, a need to
create a mathematical theory of Al planning systems that operate in dynamic,
uncertain, and time-critical environments (real-time environments).

In a control system the controller produces inputs to a dynamical system to
change its undesirable behavior to a desirable one. In contrast to Al planning,
there exists a relatively well-developed mathematical systems and control theory
for the study of properties of systems represented with, for instance, linear
ordinary differential equations. The objective of this paper is to point out rela-
tionships and to develop and discuss an extensive analogy between Al planning
and control system architectures and concepts. In the process, a foundation of
fundamental concepts in Al planning systems based on their control theoretic
counterparts is built. It is hoped that these discussions will help lead to the
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development of (1) quantitative systematic modeling, analysis, and design tech-
niques for AI planning systems; (2) methods for analyzing planning system
performance; and (3) empirical and/or analytical methods for AI planning sys-
tem verification and validation.

Research from a wide variety of disciplines such as system and control
theory, operations research, theoretical computer science, and artificial intelli-
gence will aid in such studies. It is important to note that planners that operate in
real-time environments must use feedback information to know where they are
in their problem solving process. (This is discussed further later in this paper.)
Feedback has been studied extensively in the field of system and control theory.
Hence, in solving realistic problems it is logical that results from system and
control theory will become particularly useful. An outline of the main results of
this paper follows.

In the next section, distinctions are drawn between conventional (non-Al)
and Al problem-solving systems, then between non-Al and Al planning systems.
The relationship between expert, planning, and scheduling systems is discussed.
Next, the elements of Al planning systems, their structure and functional com-
ponents, are outlined. Issues and techniques from relevant literature on Al plan-
ning systems are highlighted. This gives an overview of planning ideas and sets
the terminology for the paper.

After this overview, to begin the discussion of the relationships between Al
planning and control theoretic ideas, it is shown how the Al planning domain is
analogous to a physical plant in control theory. The plant model is analogous to
the problem representation. The plant inputs, outputs, and disturbances are real-
valued variables that are continuous or discrete in time, while the problem do-
main inputs, outputs, and disturbances are represented by symbols. The fact that
disturbances will always occur in the problem domain is discussed at length.

A state of the problem domain is a “‘snapshot’ of its behavior. It is shown
how one can relate the mathematical models of the plant and problem domain.
The ideas that are developed for planning theory are independent of both domain
and representation. Controllability refers to the ability of the inputs of a problem
domain to change its state. If a problem domain is uncontrollable, there does not
exist a planner that can achieve arbitrary desired goals. We define two types of
controllability, of which one is more restrictive than the other. Observability
refers to the ability to determine the state of the problem domain from the
inputs, outputs, and model of the problem domain. We also define two types of
observability. If a problem domain is unobservable, there does not exist a situa-
tion assessor that can always determine its state. Minimality of a problem do-
main model refers to how well the system was modeled. It quantifies whether
there are redundancies in the model.

A problem domain is said to be internally stable if, when the system begins
in some particular set of states and is perturbed, it will always return to that set
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of states without control actions. It is said to be input-output stable if, for all
“‘reasonable’’ inputs, the outputs are acceptable. A problem domain is stabiliza-
ble if there exists a planner that can make it stable. It is detectable if there exists
a situation assessor that can determine if it is not stable. The rate of a problem
domain specifies some measure of the speed of its response.

For the planner alone, the fundamental concepts borrowed from control
theory have a special meaning. The state of the planner is the situation describ-
ing the planner’s problem solving strategy at a particular instant. Planner ob-
servability refers to the ability to determine the planner state using the goal
inputs, planner outputs, and model of the planner.

Open-loop planning systems are defined. They do not have a feedback con-
nection; consequently, they will fail if there are disturbances in the problem
domain. They cannot stabilize an unstable problem domain. Open-loop planning
systems often require the use of more detailed models than are used in feedback
planning. If controllability studies show the problem domain to be uncontrolla-
ble, there may not exist a planner capable of solving the problem. Although the
rate of the system can be increased in both open- and closed-loop planning,
open-loop planners are simpler and cheaper to implement than feedback plan-
ners.

In Al feedback planning systems the planner can sense the outputs of the
problem domain and use them in its decision-making process. Feedback plan-
ners perform execution monitoring and replanning. Feedback planners can re-
cover from plan failures that occurred because of disturbances in the problem
domain. Controllability and observability studies can be used for actuator and
sensor design guidelines. These guidelines show that there is a trade-off between
expense of planning system implementation and planner complexity. Feedback
planning systems are characterized as regulatory or goal following. Design is-
sues such as stability, disturbance rejection, and rate are discussed.

For Al feedback planning systems that use situation assessment, observabil-
ity studies can show the existence of a situation assessor for state determination
and suggest its internal structure. An analogy between optimal situation assess-
ment and Kalman filtering is shown, and the separation principle is discussed.
We define adaptive planning systems that have the structure to implement meta-
planning. They also allow for human interface to the problem solving process in
the planner.

Certain concepts recently introduced in the field of intelligent control are
helpful here. Planning systems can be viewed as having a three-level hierarchy:
the execution level, the coordination level, and the management level. Models
used at higher levels are more abstract. The time scale density and decision rate
are higher at the execution level.

For the ideas just outlined to be useful for Al planning system analysis and
design, there must be appropriate formalisms and methodologies for studying
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them. They must be able to tell if a particular planning system possesses the
properties. For instance, we need a simple systematic method for determining
whether a problem domain is controllable, observable, or stable. The concluding
remarks discuss the importance of analyzing these properties of planning sys-
tems.

AI PLANNING SYSTEMS: CLASSIFICATION,
FUNCTIONAL OPERATION, AND OVERVIEW

In this section the essential components and ideas of AI planning systems are
outlined briefly and distinctions are drawn between AI planning systems and
other similar problem-solving systems. This sets the terminology for this paper.
A planning system reasons from the measured initial state of its problem domain
and determines and then executes the sequence of actions that will achieve some
final goal state in the problem domain. Before we discuss the essential elements
of Al planning systems and describe their operation, the distinctive characteris-
tics of Al planning systems that separate them from other planning systems,
scheduling systems, expert systems, and control systems are outlined.

System Classification

In general, it is our view that we can classify problem-solving systems into
two categories: conventional and Al. Several distinct characteristics distinguish
these two classes of problem-solving systems. The conventional problem-
solving system is numeric-algorithmic; it is somewhat inflexible; it is based on
the well-developed theory of algorithms or differential/difference equations; and
thus it can be studied using a variety of systematic modeling, analysis, and
design techniques. Control systems are an example of conventional problem-
solving systems.

An Al problem-solving system is a symbolic-decision maker. It is flexible
with graceful performance degradation, and it is based on formalisms that are
not well developed; actually there are very few methodical modeling, analysis,
and design techniques for these systems. Al planning system are examples of Al
problem-solving systems. When comparing the characteristics of AI and non-Al
systems, one can make the following observations: The decision rate in conven-
tional systems is typically higher than that of AI systems. The abstractness and
generality of the models used in Al systems are high compared with the fine
granularity of models used in conventional systems. Symbolic, rather than nu-
meric, representations are used in Al systems. High-level decision making and
learning capabilities similar to those of humans exists in Al systems to a much
greater extent than in conventional systems. The result is that a higher degree of
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autonomy exists in Al systems than in conventional ones. A general discussion
on problem solving is given in Shapiro (1987).

Although clear, distinct characteristics separate Al from non-Al planning
systems, as planning systems evolve the distinction becomes less clear. Systems
that were originally Al planners evolve to gain more character of non-Al plan-
ning systems. An example is a route planner. As problems like route planning
become better understood, more conventional numeric-algorithmic solutions are
developed. The Al approaches help to organize and synthesize approaches to
problem solving, in addition to being problem-solving techniques themselves.
Al techniques can be viewed as research vehicles for solving very complex
problems. As the problem solution develops, purely algorithmic approaches,
which have desirable implementation characteristics, substitute for Al tech-
niques and play a greater role in the solution of the problem.

Al planning systems use models for the problem domain called problem
representations. For instance, in the past, predicate or temporal logic has been
used. A planner’s reasoning methodology is modeled after the way a human
expert planner would behave. Therefore, the planning systems use heuristics to
reason under uncertainty. Conventional expert systems have many of the ele-
ments of planning; they use similar representations for knowledge and heuristic
inference strategies. The planning systems that are studied here, however, are
specifically designed to interface with the real world, whereas conventional ex-
pert systems typically exist in a tightly controlled computer environment. The
planning system executes actions dynamically to cause changes in the problem
domain state. The planner also monitors the problem domain for information
that will be useful in deciding a course of action so that the goal state is reached.
An explicit loop is traversed between planner-executed actions, the problem
domain, the measured outputs, and the planner that uses the outputs to decide
what control actions to execute to achieve the goal.

In an expert system there exists an analogous loop. The knowledge base is
the problem domain and the inference strategy is the planner. For rule-based
expert systems the premises of rules are matched to current working memory
(outputs are measured and interpreted), and then a heuristic inference strategy
decides which rule to fire, that is, what actions to take to change the state of
working memory (the knowledge base) and so on. The expert system has an
inherent goal of generating some diagnosis, configuring some computer system,
etc. Some expert systems have more elements of planning than others. For
instance, some consider what will happen several steps ahead, if certain actions
are taken.

A further distinction must be made between Al planning and scheduling
systems. It is the task of a planner to generate sequences of actions so that some
goal is attained without expending too many resources. A scheduling system is
concerned with when the action should be accomplished and uses the availability
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of resources to assign resources to times and actions (Kempf, 1987). In the next
section we briefly describe the elements of Al planning systems.

Elements of AI Planning Systems

An Al planning system consists of the planner, the problem domain, their
interconnections, and the exogenous inputs. The outputs of the planner are the
inputs to the problem domain. They are the control actions taken on the domain.
The outputs of the problem domain are inputs to the planner. They are measured
by the planner and used to determine the progress in the problem-solving pro-
cess. In addition, there are unmeasured exogenous inputs to the problem do-
main, which are called disturbances. They represent uncertainty in the problem
domain. The measured exogenous input to the planner is the goal. It is the task
of the planner to examine the problem domain outputs, compare them to the
goal, and determine what actions to take so that the goal is met. Not all planners
are completely autonomous. Some provide for human interface, through which
goals may be generated, and allow varying degrees of human intervention in the
planning process.

Problem Domain

The problem domain is the domain (environment) the planner reasons about
and takes actions on. The problem domain is composed of a collection of prob-
lems that the planner desires to solve. The planner takes actions on the problem
domain via the inputs to solve a particular problem. The planner measures the
effect of these actions via the outputs of the problem domain. The disturbances
represent uncertainty in the problem domain. The solution of a problem is com-
posed of the sequence of inputs and outputs (possibly states) generated in achiev-
ing the goal.

One develops a model of the real problem domain to study planning sys-
tems. This is called the problem representation. The real problem domain is in
some sense infinite; that is, no model could ever capture all the information in it.
The problem representation is necessarily inaccurate. It may even be inaccurate
by choice, such as when the planning system designer ignores certain problem
domain characteristics in favor of using a simpler representation. Simpler
models are desirable, since there is an inversely proportional relationship be-
tween modeling complexity and analysis power. The characteristics of the prob-
lem domain that are ignored or missed are collectively represented by distur-
bances in the model. The result is that disturbances in general have a
nondeterministic character. Clearly, disturbances occur in every problem do-
main; they can be ignored when they are small, but their effect should always be
studied to avoid erroneous planner designs.
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Al Planner

In this section we describe the functional components of an Al planner. The
Al planner’s task is to solve problems. To do so, it coordinates several func-
tions: Plan generation is the process of synthesizing a set of candidate plans to
achieve the current goal. This can be done for the initial plan or for replanning if
there is a plan failure. In plan generation, the system projects (simulates, with a
model of the problem domain) into the future, to determine if a developed plan
will succeed. The system then uses heuristic plan decision rules based on re-
source utilization, probability of success, and so forth to choose which plan to
execute. The plan executor translates the chosen plan into physical actions to be
taken on the problem domain. It may use scheduling techniques to do so. Situa-
tion assessment uses the problem domain inputs, outputs, and problem represen-
tation to determine the state of the domain. The estimated domain state is used to
update the state of the model that is used for projection in plan generation. The
term “‘situation’’ is used because of the abstract, global view of the system’s
state that is taken here. The term ‘‘assessment” is used since the value of the
state is determined or estimated. Execution monitoring uses the estimated do-
main state and the problem domain inputs and outputs to determine if everything
is going as planned. If it isn’t—that is, if the plan has failed—the plan generator
is notified that it must replan.

A world modeler produces an update to a world model or a completely new
world model. The world modeler determines the structure of the problem do-
main rather than just the state of the problem domain, as is done by the situation
assessor. It also determines what must be modeled for a problem to be solved;
hence it partially determines what may be disturbances in the problem domain.
The term ““‘world modeler” is thus used to indicate that it must be cognizant of
the entire modeling process. Its final output is a problem representation. A
planner designer uses the problem representation produced by the world mod-
eler and designs, or makes changes to, the planner so that it can achieve its goal
even though there are structural changes in the problem domain. The planner
designer may not need a new problem representation if there are not structural
changes in the problem domain. It may decide to change the planner’s strategy if
some performance level is not being attained or if certain events occur in the
problem domain.

Issues and Techniques in Al Planning Systems

In this section we briefly outline some of the issues and techniques in Al
planning systems, giving reference to the relevant literature. General informa-
tion is given in Charniak and McDermott (1985), Nilsson (1980), Barr and
Feigenbaum (1981, 1982), Cohen and Feigenbaum (1982), Wilensky (1983),
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Shapiro (1987), Gevarter (1984), Fu et al. (1987), and Tanimoto (1987). Plan-
ning has its roots in the study of problem solving (Ernst and Newell, 1969). A
relatively complete summary of planning ideas and an extensive bibliography on
planning are given in Tate (1985). The goal of this section is to set the terminol-
ogy of the report, not to create an extensive bibliography. As active research is
progressing in many areas of planning, the terminology is also evolving; conse-
quently, the definitions and terminology used here are tentative.

Representation is fundamental to all issues and techniques in Al planning. It
refers to the methods used to model the problem domain and the planner and it
sets the framework and restrictions on the planning system. Often, it amounts to
the specification of a formalism for representing the planner and problem do-
mains in special structures in a computer language. Alternatively, it could con-
stitute a mathematical formalism for studying planning problems. Different
types of symbolic representations such as finite automata and predicate or tem-
poral logics have been used. Some methods allow for the modeling of different
characteristics. Some do not allow for the modeling of nondeterminism. Repre-
sentational issues are examined in Charniak and McDermott (1985), Nilsson
(1980), Barr and Feigenbaum (1981), Wilensky (1983), Tanimoto (1987), Fu et
al. (1987), McDermott (1982, 1985), Warren (1974), Hayes-Roth (1979), Ro-
senschein (1981), Allen and Koomen (1983), Wilkins (1983), Firschein et al.
(1986), Chapman (1987), Stephanopoulos et al. (1987), Hodgson (1987), Drum-
mond et al. (1987), and many others. One should be very careful in the choice
of how much detailed mathematical structure or modeling power is allowed,
since too much modeling power can hinder the development of some functional
components of the planner and of the analysis, verification, and validation of
planning systems.

The generality of developed planning techniques depends heavily on
whether the approach is domain dependent or domain independent. Techniques
developed for one specific problem domain without concern for their applicabil-
ity to other domains are domain dependent. An example of domain-dependent
work is given in Stefik (1981), and Dudziak et al. (1987). An example of a more
general domain-independent planner is given in Sacerdoti (1975), Fikes and
Nilsson (1971), or McDermott (1985). Other work that examines domain depen-
dence is given in Wilkins (1983, 1984). The results in the next section of this
paper are both domain independent and problem representation independent.

Planners can be classified broadly as either hierarchical or nonhierarchical.
A nonhierarchical planner makes all of its decisions at one level, while in a
hierarchical planner there is delegation of duties to lower levels and a layered
distribution of decision making. Their fundamental operation is explained in
Tate (1985), Cohen and Feigenbaum (1982), and Nilsson (1980). Characteristics
of and a comparison between these two types of planners are given in Stefik
(1981). Some of the original work was done in Sacerdoti (1973). Other impor-
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tant work is given in Tate (1977), Adams (1985), Hayes-Roth (1979), Fikes
(1971), Sacerdoti (1975), Charniak and McDermott (1985), and Stefik (1981).

Planners can also be classified as linear or nonlinear. A linear planner
produces a strict sequence of actions as a plan, while a nonlinear planner pro-
duces a partially ordered sequence where coordination between the tasks and
subtasks to be executed is carefully considered. The original work on nonlinear
planning is given in the classic work of Sacerdoti (1975). Extensions to this
work are given in Tate (1977), Allen and Koomen (1983), Vere (1983), and
Wilkins (1983, 1984). A good summary is given in Tate (1985).

Several types of interactions can occur in planning. One is the interaction
between subtasks or subplans that requires their proper coordination. Another is
between different goals we might want to achieve, Waldinger (1975). Still an-
other is between different planning modules or with the human interface. Impor-
tant work in this area is found in Broverman and Croft (1987), Bruce and
Newman (1978), and Hayes (1987). A nice categorization of types of interac-
tions and summary of ideas is given in Tate (1985).

Search is used in planning systems, for instance, to find a feasible plan.
There are many types of search, such as the heuristic search algorithms called
A* and AO*. A good introduction to the topic is given in Pearl (1984), Nilsson
(1980), or Barr and Feigenbaum (1981). A summary of search techniques used
in planning is given in Tate (1985) or in Shapiro (1987). In Korf (1987) the
author uses results from the theory of search to quantify some time and space
complexities of planning. In Passino and Antsaklis (1988a, 1988b) planning
problems are solved using heuristic search in a Petri net framework. An applica-
tion to a robot problem is given in Graglia and Meystel (1987) and to mission
control/decision support in Deutsch et al. (1985).

Skeletal plans, plan schemata, and scripts are all representations of plans
with varying degrees of abstraction. Skeletal plans are plans that to some extent
do not have all the details filled in. A script is a knowledge structure containing
a stereotypic sequence of actions. Plan schemata are similar. Often planners that
use these forms for plans store them in a plan library. Hypothetical planning is
planning where the planner hypothesizes a goal, produces a subsequent plan,
and stores it in a plan library for later use, all while the current plan is execut-
ing. Good explanations of some of these ideas are given in Shaprio (1987),
Cohen and Feigenbaum (1982), and Adams et al. (1985).

Replanning is the process by which plans are generated so that the system
recovers after a plan has failed. There are two types of plan failures. One occurs
in plan generation, where the planner fails to generate a plan. In this case,
replanning can be successful only if a planner redesigner makes some changes to
the planner strategy. The second type of plan failure occurs in the execution of
the plan and is due to disturbances in the problem domain. This plan failure can
be accommodated by replanning in the plan generation module, if the failure is
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not due to a significant structural change in the problem domain. If it is, then the
world modeler will produce a new world model and the planner designer will
make the appropriate changes to the planner so that it can replan. Some of these
ideas are discussed in Charniak and McDermott (1985).

Projection is used in plan generation to look into the future so that the
feasibility of a candidate plan can be decided. If it is assumed that there are no
disturbances in the problem domain, and a plan can be generated, then it can be
executed with complete confidence in plan success. Disturbances cannot be ig-
nored in problem domains associated with real-world dynamic environments;
therefore, complete projection is often futile. The chosen projection length
(number of steps in symbolic simulation) depends on the type and frequency of
disturbances and is therefore domain dependent. Notice that if the projection
length is short, plan execution can be interleaved with planning and replanning.
This sort of planning has been named reactive planning (Georgeff, 1987). A
completely proactive planner always has a plan ready for execution (in a plan
library) no matter what the situation is in the problem domain. These plans could
be skeletal or scripts. Some mixture of proactive and reactive planning with
varying projection length is probably most appropriate. These ideas are ex-
plained from a different point of view in Hayes-Roth (1979). There opportunis-
tic planning is introduced; one forms a partial plan and then begins execution
with the hope that opportunities will arise during execution that will allow for
the complete specification of the plan and its ultimate success.

Planning with constraints is a planning methodology where certain con-
straints on the planning process are set and the planner must ensure that these
constraints are not violated (Stefik, 1981; Winslett, 1987). A planning system
that uses several planners to solve different parts of the problem is explained in
Hayes-Roth (1979), Firschein (1986), and Georgeff (1984). Some issues in hu-
man interface to the planning process are discussed in Charniak and McDermott
(1985), Barr (1981, 1982), and Cohen and Feigenbaum (1982).

Distributed planning occurs when a problem is solved by coordinating the
results from several expert planners. It is also called multiagent planning. A
relatively complete overview of distributed planning is contained in Tate (1985)
and another bibliography is given in Kempf (1987).

Metaplanning is the process of reasoning about how a planner reasons. It is
used with world modeling and changes the planning strategy. A domain-
dependent example of metaplanning is given in Stefik (1981). A general expla-
nation of metaplanning is given in Wilensky (1983). Other information on meta-
planning is found in Wilensky (1981) and Hayes-Roth and Hayes-Roth (1979).
Planners can also be made to learn. For example, a simple form of learning is to
save successful plans in a plan library for later use in the same situation. Other
forms of learning are described in Charniak (1985), Cohen and Feigenbaum
(1982), and Fikes et al. (1972).
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The objective of this paper is to begin the formulation of an approach for the
quantitative study of Al planning systems that operate in uncertain, dynamic,
and time-critical environments. One way to study planning system behavior is
by the empirical method. Other more quantitative studies specify a computer
language or formal model for the problem domain. (See all the representation
research outlined above.) Formal modeling and analysis has used propositional
dynamic logic for the verification of planning systems (Rosenschein, 1981).
Several types of temporal logics have been used to model and analyze planning
systems (McDermott, 1978, 1982, 1985; and Koomen, 1983). The work in
Chapman (1987) using modal logic is also important. In Giordana and Saitta
(1985) the authors model a production system’s data and rules and check for its
consistency using a type of Petri net formalism. Recently, a different Petri net
has been introduced for the modeling and analysis of AI planning problems
(Passino and Antsaklis, 1988a, 1988b). The growing body of literature on expert
system verification and validation also may be relevant.

AI PLANNING AND CONTROL THEORY:
ANALOGY AND RELATIONSHIPS

Relationships and an extensive analogy between AI planning and control
system architectures and concepts are developed in this section. This is possible
because both are problem solving systems (as described earlier) with different
problem domains. It is useful to draw the analogy since conventional problem-
solving systems, such as control systems, are very well studied. They have a
well-developed set of fundamental concepts and formal mathematical modeling,
analysis, and design techniques. The analogy is used to derive a corresponding
foundation of fundamental concepts for Al planning systems that can be used to
develop modeling, analysis, and design techniques.

The discussions below are meant to motivate the utility of using general
systems theory for the study of Al planning systems. In particular, it is hoped
that it is made clear that the general concepts of controllability, observability,
stability, and so forth as defined in systems and control theory will be useful in
the quantitative study of Al planning systems. The results here will probably
need to be revised and expanded before a careful formulation of a mathematical
theory of Al planning via control theory is possible.

After discussing some fundamental system theoretic concepts and the prob-
lem domain and plant analogy, open-loop planning is introduced. Feedback plan-
ning with and without situation assessment is introduced and discussed. Adap-
tive Al planning is introduced. The details of the internal architectures of the
various planners introduced are given, but they are used only to discuss the
concepts in this paper. A particular planner implementation may have a different
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functional architecture. This section closes by highlighting some recent ideas
from intelligent autonomous control relevant to Al planning.

The Problem Domain-Plant Analogy

In this section we shall give the structural analogy (functional analogy) be-
tween the problem domain and the plant. In conventional control, the plant is a
dynamical system whose behavior we wish to study and alter. It is generally
described with linear or nonlinear differential/difference equations and is either
deterministic or nondeterministic. The problem domain is the domain (environ-
ment) the AI planner reasons about and takes actions on. It can be modeled
using predicate or temporal logic or other symbolic techniques such as finite
automata. We develop the analogy further using Fig. 1.

As it is often done, we adopt the convention that actuators and sensors are
part of the plant and thus part of the problem domain description. Plant actua-
tors are hardware devices (transducers) that translate commands u(#) from the
controller into actions taken on the physical system. The variable ¢ represents
time.

In a problem domain, we take a more macroscopic view of an actuator, a
view that depends on available hardware and the type of inputs generated by the
planner. For example, in a robotic system a manipulator may be quite dexterous;
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FIGURE 1. Problem domain/plant structure.
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one may be able to send the simple command “pick up object,” and it will know
how to move to the object, grip it, and pick it up. Such a manipulator can be
seen as an actuator, although simpler ones also exist. Clearly, the inputs to the
problem domain can be more abstract than those of a plant; consequently, we
describe them with symbols u; rather than numbers. The index i represents time
in the problem domain. The symbols are quite general and allow for the repre-
sentation of all possible actions that any planner can take on the problem do-
main. For example, u, = ‘“‘pick up object” or #, = ‘“move manipulator from
position 3 to position 7.”” Rather than an input u(f) for the plant, the problem
domain input ; is a time sequence of symbols.

The physical system for both the problem domain and the plant is some
portion of the real world that we wish to study and alter. The difference between
the two is in the types of systems that are normally considered and thus the
modeling techniques that are used (see discussion in the section entitled Problem
Domain). Aspects of the dynamical behavior of plants such as cars, antennas,
satellites, or submarines can be modeled by differential equations. Problem do-
mains studied in the Al planning literature include simple robot problems (Char-
niak and McDermott, 1985), experiments in molecular genetics (Stefik, 1981),
or running errands (Hayes-Roth and Hayes-Roth, 1979). Notice that problem
domains cannot always be described by differential equations. Consequently,
conventional control techniques are inappropriate for Al planning problems.

The sensors in the plant and problem domain are used to measure variables
of the physical system and translate this information to y(f) for the controller and
y; for the planner. The symbols y, provide for the representation of all possible
measured values of outputs of the problem domain. As with the actuators in the
problem domain, we take a more macroscopic view of sensors. They can com-
bine various data to form an aggregate representation of dynamic problem do-
main information. This necessitates the use of symbolic representations of the
measured outputs; consequently, y, is a time sequence of symbols. For example,
in the robot problem the positions of some of the objects to be moved could be
represented with y,. The outputs could be y, = “object 1 in position 5> and
y, = “‘object 1 in position 3. The inputs u; can affect the physical system so
that the outputs y, can change over time.

The state of the plant or problem domain (or any dynamical system) is the
information necessary to predict the future behavior of the system given the
present and future system inputs. A particular state is a snapshot of the system’s
behavior. The initial state is the initial condition on the differential/difference
equation that describes the plant, or the initial situation in the problem domain
prior to the first time a plan is executed. We shall denote the state of the plant
with x(#) and the problem domain with x,. The set of all possible states is loosely
referred to as the state space. In our robot problem domain, the initial sate can
be the initial positions of the manipulator and objects. For two objects, the initial
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state might be x, = ‘“‘object 1 in position 3 and object 2 in position 7 and
manipulator in position 5. Notice that part of the state is directly contained in
the output for our example. The state describes the current actuation and sensing
situation in addition to the physical system, since the sensors and actuators are
considered part of the problem domain.

The plant and problem domain are necessarily affected by disturbances d(t)
or symbols d, respectively (see discussion under Problem Domain). These can
appear as modeling inaccuracies, parameter variations, or noise in the actuators,
physical system, and sensors. In our robotics problem domain a disturbance
might be some external, unmodeled agent, who also moves the objects. Next we
show how the functional analogy between the plant and problem domain extends
to a mathematical analogy.

The Plant-Problem Domain Model Analogy

Because of their strong structural similarities it is not surprising that we can
develop an analogy between the models that we use for the plant and the prob-
lem domain and between fundamental systems concepts. Essentially this in-
volves a discussion of the application of a general systems theory described in
Kalman et al. (1969) to planning systems. We extract the essential control theo-
retic ideas and adapt them to planning theory, without providing lengthly expla-
nations of conventional control theory. The interested reader can find the rele-
vant control theoretical ideas presented below in Kalman et al. (1969), D’Azzo
and Houpis (1981), Chen (1984), Miller and Michel (1982), Goodwin and Sin
(1984), and Astrom and Wittenmark (1984). We assume that the plant is de-
scribed by a set of stochastic, possibly nonlinear, differential equations called
the state equation and the output equation. They describe the dynamics of the
plant, its structure, and its connections. We assume that we can describe the
dynamics of the problem domain by a set of symbolic equations such as those
used to describe finite-state automata (Hopcroft and Ullman, 1979). For systems
described with, for instance, a Moore machine, there exist analogous state and
output equations. These equations describe the dynamics of a system such as the
problem domain (or the planner or planning system), its structure, and its con-
nections.

The mathematical analogy continues by studying certain properties of sys-
tems that have been found to be of utmost importance in conventional control
theory.

Controllability

In control theory, and thus in planning theory, controllability refers to the
ability of a system’s inputs to change the state of the system. It is convenient to
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consider a deterministic system for the discussion. A sequence of inputs «; can
transfer or steer a state from one value to another. In the robot example, a
sequence of input actions transfers the state from x, = “‘object 1 in position 3
and object 2 in position 7 and manipulator in position 5°* to x; = ‘“object 1 in
position 5 and object 2 in position 10 and manipulator in position 1.”

A system is said to be completely controllable at time i if there exists a
finite time j > i such that for any state x; and any state x there exists an input
sequence U, . . . , u; that will transfer the state x; to the state x at time j, that
is, x; = x.

Intuitively, this means that a problem domain is completely controllable at
some time if and only if, for every two state values of the state space of the
problem representation, there exists a finite sequence of inputs (that some
planner could produce) that will move the state from one value to the other
(one state to the other). Also notice that the time Jj — i1is not necessarily the
minimum possible. There might be another sequence of inputs that will bring
one state to the other in fewer steps. In the robot example, the problem domain
is completely controllable if, for any position of the manipulator and objects,
there exist actions (inputs) that can change to any other position of the objects
and manipulator.

If a problem domain is completely controllable, then for any state there
exists a planner that can achieve any specified goal state. Sometimes com-
plete controllability is not a property of the system, but it may possess
a weaker form of controllability, which we discuss next. To discuss a more
realistic, weaker form of controllability we assume that the state space can be
partitioned into disjoint sets of controllable and uncontrollable
states.

A system is said to be weakly controllable at time i if there exists a finite
time j > i such that for any states x; and x, both in the set of controllable
states, there exists an input sequence u,, . . . , #; that will transfer the state x;
to the state x at time j, that is, x; = x.

If the initial state and the goal state are given and contained in the set of
controllable states and the problem representation is weakly controllable, then
there exists a planner that can move the initial state to the goal state. That is,
there exists a planner that can solve the problem. In the robot example, if the
problem representation is weakly controllable and the initial state begins in the
set of controllable states, then there are actions (inputs) that can move the ma-
nipulator and objects to a certain set of positions in the set of controllable states,
the ones one might want to move them to.

A problem representation that is not completely controllable may still be
weakly controllable. If a problem representation is not weakly controllable, then
it is not completely controllable. Note that there are corresponding definitions
for output controllability.
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Observability

In control theory, and thus in planning theory, observability of the problem
domain refers to the ability to determine the state of a system from the inputs,
outputs, and model of the system.

A system is said to be completely observable at time i if there exists a finite
time j > i, such that for any state x;, the problem representation, the sequence of
inputs, and the corresponding sequence of outputs over the time interval [i, j]
uniquely determine the state x;.

Intuitively, this means that a problem domain is completely observable at
some time if and only if, for every sequence of domain inputs and their corre-
sponding outputs, the model of the domain and the input and output sequences
are all that is necessary to determine the state that the domain began in. A
problem domain that is completely observable on some long time interval may
not be completely observable on a shorter interval. It may take a longer se-
quence of inputs and outputs to determine the state.

In the robot example, if the problem domain is completely observable, then
for every sequence of actions (inputs) there exists a situation assessor that can
determine the position of the objects and manipulator from the input sequence,
output sequence, and model of the problem domain.

If a problem domain is completely observable, then for any initial state,
there exists a situation assessor that can determine the state of the problem
domain. This situation assessor needs both the inputs and the outputs of the
problem domain, and there is the assumption that there are no disturbances in
the domain. Sometimes complete observability is not a property of systems,
but they may possess a weaker form of observability, which is defined next. To
discuss a more realistic, weaker form of observability, we will assume that the
state space can be partitioned into disjoint sets of observable and unobservable
states.

A system is said to be weakly observable at time i if there exists a finite time
J > i such that, for any state x; in the set of observable states, the problem
representation, the sequence of inputs, and the corresponding sequence of out-
puts over the interval [7, j] uniquely determine the state Xx;.

If the problem domain is weakly observable, there exists a situation assessor
that can determine the state of the problem domain given that the system state
begins in the set of observable states. In the robot example, if the problem
domain is weakly observable, then for any initial observable state and every
sequence of actions (inputs) that any planner can produce, there exists a situation
assessor that can determine the position of the objects and manipulator from the
planner input sequence, output sequence, and model of the problem domain.

If a problem domain is not completely observable, it may still be weakly
observable. If it is completely observable, it is weakly observable. Like control-
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lability, observability is a property of systems in general; therefore it has mean-
ing for the problem domain, planner, and planning system.

In control, and thus planning, theory, a model of a system is minimal or
irreducible if it uses the least number of state variables to describe the dynamical
behavior. That is, it is minimal if there are no redundancies in the model. If a
system is not minimal, then there exists a different system representation whose
state space is of smaller dimension (size). The minimality property quantifies
how well the problem domain was modeled. Minimality is also a property of the
planner and the whole planning system.

Stability

In control, and thus in planning theory, we say that a system is internally
stable if with no inputs, when the system begins in some particular set of states
and the state is perturbed, it will always return to that set of states. For the
discussion we partition the state space into disjoint sets of ‘‘good’ states and
“‘bad’’ states. Also, we define the null input for all problem domains as the input
that has no effect on the problem domain. Assume that the input to the system is
the null input for all time. A system is said to be internally stable if, when it
begins in a good state and is perturbed into any other state, it will always return
to a good state.

To clarify the definition, a specific example is given. Suppose that we have
the robot manipulator described above. Suppose further that the set of positions
the manipulator can be in can be broken into two sets, the good positions and the
bad positions. A good position might be one in some envelope of its reach, while
a bad one might be where it would be dangerously close to some human opera-
tor. If such a system was internally stable, then if the manipulator was in the
good envelope and was bumped by something, it might come dangerously close
to the human operator, but it would resituate itself back in the good envelope
without any external intervention.

We make the following definitions to produce one more definition of stabil-
ity. We assume that we can partition the set of possible input and output symbols
into disjoint sets of good and bad inputs and outputs. A system is said to be
input-output stable if for all good input sequences the corresponding output
sequences are good.

In the robot example, suppose the inputs to the manipulator can be broken
into two sets, the good ones and the bad ones. A bad input might be one that
takes a lot of resources or time to execute, or it might be an input that takes
some unreasonable action on the problem domain. Let the output of the robot
problem domain be the position of the objects that the manipulator is to move. A
bad output position would be to have an object obstruct the operation of some
other machine or to have the objects stacked so that one would crush the other.
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The robot problem domain is input-output stable if for all reasonable actions
(good inputs) the manipulator is asked to perform, it produces a good position-
ing of the objects (good outputs) in the problem domain. These stability defini-
tions and ideas also apply to the planner and the planning system. We shall
expand on this in a later section.

Stabilizability refers to the ability to make a system stable. For a planning
system it may, for instance, refer to the ability of any planner to stabilize the
problem domain. A system is said to be stabilizable if the set of controllable
states contains the bad states. For the robot example, the problem domain is
stabilizable if, for all states that represent bad positions of the manipulator arm,
there are inputs that can move the arm to its good (state) operating envelope.
Detectability refers to the ability to detect instabilities in a system. For a plan-
ning system it may, for instance, refer to the ability of the situation assessor to
determine if there are instabilities in the problem domain. A system is said to be
detectable if the set of observable states contains the bad states. For the robot
example, if the problem domain is detectable, then for all input sequences that
place the manipulator arm in a bad position, there exists a situation assessor that
can determine the state. These definitions also apply to the planner and the
planning system.

Rate of a System

The rate of a system in conventional control theory quantifies how quickly
the system will react to its inputs or how fast the outputs will change for a given
set of inputs. In the time domain, other terms used include time constant and rise
time. For linear control theory, bandwidth is used in the frequency domain. In
an Al planning system, rate is defined similarly. However, it cannot be properly
defined mathematically until the form of the model is specified. For now we can
think of it as some global measure of how many steps it takes for the system to
react to some inputs. In the robot example, it is some measure of how many
steps it will take to arrange the objects properly in some desired configuration.

In this section we have developed a foundation of fundamental ideas for
planning theory. When one begins to formulate a planning problem, one begins
by modeling the problem domain; that is, the form of problem representation is
chosen. Notice that the above properties are both domain and representation
independent. Controllability and observability studies will quantify the feasibil-
ity of solving the problem at hand. Minimality will tell how well the problem
domain was modeled. Stability of the problem domain is an important qualitative
property that must be understood so that a planner of the proper form is de-
signed. Stabilizability and detectability studies will say whether it is possible to
attain stability in a feedback planning system. Rate of the planning system quan-
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tifies how quickly the problem can be solved. We expand on these ideas for
specific planners and planning system structures in the following sections.

Open Loop Al Planning Systems

In this section we define open loop planning systems and outline some of
their characteristics. They are named ‘““open loop’” because they use no feedback
information from the problem domain. We begin by drawing analogies with the
structure of open loop control systems.

Open Loop Control System-Planning System Structural Analogy

Here we develop a structural analogy between open loop conventional control
systems and open loop planning systems, beginning with Fig. 2. In conventional
control theory, the open loop control system has the structure shown at the bottom
of Fig. 2. The outputs of the controller are connected to the inputs of the plant so
that they can change the behavior of the plant. The input to the controller is the
reference input r(f), and it is what we desire the output of the plant to be. The
controller is supposed to select the inputs of the plant u(#) so that y(#) — r(f), or
¥(t) — r(f) is appropriately small for all times greater than some value of f.
Specifications on the performance of control systems speak of the quality of the
response of y(f). For example, we might want some type of transient response or
we might want to reduce the effect of the disturbance on the output y(f). However,
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FIGURE 2. Open loop structural analogy.
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an open loop control system cannot reduce the effect of disturbances in any way;
notice that, by definition, the disturbances cannot be measured.

In the open loop planner, plan generation is the process of synthesizing a set
of candidate plans to achieve the goal at step i, which we denote by g,. The goals
g; may remain fixed, or change in time. In plan generation, the system projects
(simulates, with a model of the problem domain) into the future, to determine if
a developed plan will succeed. The system then uses heuristic plan decision
rules based on resource utilization, probability of success, and so forth to choose
which plan to execute. The plan executor translates the chosen plan into actions
(inputs u,) to be taken on the problem domain. Many Al planners implemented
to date are open loop planners.

Characteristics of AI Open Loop Planning

‘We first consider the characteristics of the planner itself (not connected to
the problem domain) by interpreting the results above. Then we outline the
characteristics of open loop planning systems.

Fundamental issues in the planner. 1t is useful to consider the planner to be a
model of some human expert planner. The state of the planner is the situation
describing the planner’s problem-solving strategy at a particular instant. Planner
controllability refers to the ability of the goal inputs to affect the state of the
planner. Planner observability refers to the ability to determine the planner state
using the goal inputs, planner outputs #,, and the model of the planner. Minimal-
ity of the planner model reflects how well the planner was designed and modeled
and thus, since an actual planner implementation depends on the model, how
cheaply the planner can be implemented. Internal stability of the planner refers
to its ability to stay in a problem-solving state of mind (ready to solve problems)
when there are no goals to achieve (a null input). Input-output stability of the
planner is attained if for all reasonable, admissible goals input the planner pro-
duces reasonable, acceptable outputs u,. The planner is stabilizable if there exists
a sequence of goals that will keep the planner properly focused on the problem.
The planner is detectable if for all goal sequences that cause the planner to lose
its focus of attention, the inputs, outputs, and model of the planner can be used
to determine where the focus of attention is. The rate of the planner quantifies
how quickly the planner can produce solutions with appropriate control actions.

Fundamental issues in the open loop system. All of the interpretations given
above for the planner are valid here, the difference being that since we cascade
the problem domain we are thinking of solving a particular problem. If the
problem domain is uncontrollable, there may not exist a planner capable of
solving the problem. If it is controllable, a planner does exist. This does not
mean that if the problem domain is completely controllable, we can choose any
planner and it will solve the problem. It just says that one exists. Situation
assessment and execution monitoring cannot be done since there is no connec-
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tion to the outputs of the problem domain. Consequently, there cannot be any
replanning. If there are any disturbances in the problem domain, the planner
canl become totally lost in its problem-solving process, because it has no ability
to recover from plan failure; it is even unaware that there was a failure. We say
that the planning system is sensitive to problem domain variations and open loop
planners cannot reduce this sensitivity. This is closely related to the idea of
sensitivity reduction in conventional control theory. Since, as explained under
System Classification, there will always be some disturbances in the real world,
open loop planners will necessarily fail at their task. However, they can work if
the problem domain is well modeled and the disturbances are quite insignificant.
This generally requires the use of a very complex, detailed model of the problem
domain in the case of significant real-world problems.  Notice that since the
outputs are not sensed, if the problem domain is unstable (input-output or inter-
nally), then it is never stabilizable in open loop planning. Open loop stabilization
requires absolutely exact knowledge of the problem domain. Since often this
cannot be obtained, even insignificant disturbances can be catastrophic. The rate
of the open loop system (planner and problem domain) can be increased over
that of the problem domain, since the planner can choose shorter-path solutions.
So analysis can be done to determine if certain specifications about the perfor-
mance of the planning system can be achieved. World modeling and planner
designing also cannot be done since the outputs are not sensed.

The length of projection in plan generation can be quite long, since if one is
using open loop planning the disturbances must be assumed nonexistent or insig-
nificant. The only reason for making the projection length shorter would be to
begin plan execution. If the projection length is too short for the plan generator
to specify a set of plans that will work, there will be uncertainty in the plan
execution that may lead to ultimate plan failure. This is why current open loop
planners build the complete plan and then execute it.

Open loop planners do have the advantage of simplicity. If the problem
domain is stable and disturbances are insignificant, they should certainly be
considered. They are cheaper to implement than the closed loop planners de-
scribed in the next two sections, since one does not need to buy sensors to gather
information about the states and outputs of the problem domain.

Al Feedback Planning Systems

Al feedback planning systems are analogous to conventional feedback con-
trol systems that do not use state estimation; they do not use situation assess-
ment. Charniak and McDermott (1985, chapter 9) point out the inherent feed-
back in the planning process. They do not, however, make a clear distinction of
the separation between the planner and problem domain and their interconnec-
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tions. In this section the distinctions will be clarified. In the next section we will
introduce Al feedback planning systems that use situation assessment.

The Closed Loop System Structural Analogy

The analogy between the feedback structures emerges from Fig. 3. The
structure is the same as for the open loop system except that there is the feed-
back connection. This allows the planner to perform execution monitoring and
replanning. The feedback planning system can recover from plan failures due to
significant disturbances in the problem domain. The execution monitoring sys-
tem uses the measured outputs, inputs, and domain model to determine if the
current plan has failed. If a plan fails, it informs the plan generator that it must
replan.

Fundamental Issues in Al Feedback Planning Systems

If the problem domain is not completely controllable, one can perhaps use
more elaborate actuator systems that will properly affect the state of the domain,
or perhaps rederive the model of the problem domain since controllability is a
property of the mathematical model used. Therefore, controllability studies can
be used for design guidelines for the problem domain, and likewise for observ-
ability. Situation assessment is not needed in a planner if the full state of the
problem domain is measurable. This is analogous to full state feedback in con-
ventional control theory. If observability studies show that some states of the
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domain are unobservable, one can design and implement additional sensors that
can provide the necessary information about the state. We see that there is a
trade-off between expense of implementation of a planning system and planner
complexity. It may be expensive to implement sensors to sense the whole state,
but then situation assessment is not necessary, thus making the planner simpler.

If the problem domain is completely controllable and observable with re-
spect to the chosen inputs and outputs, there exists a feedback planner that can
stabilize the problem domain if it is unstable.

Goal Tracking/Following in Al Feedback Planning Systems

For the controller to force the plant output to track or follow the reference
input, it compares the output to the current reference input and decides what to
input into the plant. In comparing r(¢) and y(#), the controller simply uses the
difference r(f) — y(¢) to determine how well it is meeting its objective at any
instant and takes appropriate actions. The difference r(f) — y(¢), called the
error, is a control measure.

The planning system examines the difference between the current output
situation and the goal to be achieved and takes subsequent actions. The error in
the planning system is not as easy to form as in the conventional control case,
because distance between symbols is more difficult to quantify. One could, how-
ever, say that a problem domain output is closer to the goal if the components
that make up the output are closer to satisfying the goal. If the goal is a conjunc-
tion of several subgoals, it is closer to the output if the outputs make more of the
subgoals true.

Suppose we fix the goal input to the feedback planning system to be the
same for all time, that is, g, = g, for all i. The feedback planning system is then
considered to be a regulatory planning system. It achieves the goal state and
regulates the inputs to the problem domain to ensure that the goals are met for
all time even in the face of problem domain disturbances.

If the sequence of goals g;, the exogenous inputs to the planner, change over
time and the planner achieves the goals sequentially, the planning system is said
to be a goal-following or goal-tracking planning system. Notice that if the goals
change too quickly, the planner may not be able to keep up, and there will be
some tracking error.

Design Issues in Al Feedback Planning Systems

When one designs a feedback planning system, there are certain properties
that are desirable for the closed loop planning system. We refer to these proper-
ties collectively as the closed loop specifications. These could be stability, rate,
performance measures, and so forth.

Normally, stability is always a closed loop specification. The planner is
designed so that stability is present in the closed loop system. Take special note
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that even though feedback planning systems have the ability to stabilize any
system that is stabilizable, they can also destabilize an otherwise stable problem
domain. As an example, consider the case when, because of some delay in
receiving feedback information, the planner applies the right plan but at the
wrong time. One must be careful in the design so that this is avoided. Systems
are often destabilized when one tries to increase the rate of the system. There-
fore, if some rate is also a closed loop specification, it may be the case that only
a certain rate is achievable, given that you want a safety margin to ensure that
the system is stable.

A very important advantage of feedback planning systems over their open
loop counterparts is their ability to reject problem domain disturbances (reach
and maintain a goal even with disturbances) and to be insensitive to problem
domain variations (reach a goal even though the model is inaccurate). In conven-
tional control theory these objectives are designed for, using techniques that will
produce optimal disturbance rejection and sensitivity reduction. Systems that
meet these objectives are said to be robust. The theory of robust control ad-
dresses these questions.

AI Feedback Planning Systems with Situation Assessment

Analogous to the conventional controller that uses state estimation, there are
Al feedback planning systems that use situation assessment. In Wilensky (1983)
the author’s description of planning and understanding is quite similar in charac-
ter to what is presented below. Understanding corresponds to situation assess-
ment. An understanding system, according to Wilensky (p. 10), ‘‘is given the
‘solution’’” (the inputs and outputs of the problem domain) “‘and must recon-
struct the goal and state of the world from it.”” In this section it is shown “‘that a
good problem solver should incorporate some of the capabilities that were just
attributed to understanding mechanisms’” (Wilensky, 1983, p. 10). Wilensky
also explains the ideas behind metaplanning, which are related to the next sec-
tion on Al Adaptive planning.

Al Feedback Planning System with Situation
Assessment—Control Structural Analogy

The structural analogy between the two feedback systems is shown in Fig.
4. If the problem domain is observable, then there exists a situation assessor that
can determine the state of the problem domain from the domain inputs, outputs,
and model. If this condition is not met, situation assessment cannot be successful
at all times. Situation assessment is particularly useful in stabilizing the problem
domain when it is detectable. The state estimator (also called an observer) in the
conventional controller is analogous to the situation assessor. Both estimate the
state and provide the state estimate for use in determining what actions ought to
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FIGURE 4. Closed loop structural analogy with situation assessment and state estimation.

be taken next (by the control law or rest of the planner). Notice that with the
situation assessor it is possible for the execution monitor to perform better. With
complete state information it will be able to detect plan failure more accurately
or in cases where it was not possible without situation assessment.

Situation Assessment in AI Feedback Planning

The observability condition suggests that the situation assessor will need the
problem domain inputs, outputs, and model to perform its task. When projection
is done with a model of the domain, the planner knows where the state of the
domain ought to be. The situation assessor uses this information and the domain
inputs, outputs, and model to modify its own estimate of the state. This idea has
already been mentioned in Hawker and Nagel (1987). There is the need for a
measurement (of the error) between where the state ought to be and the current
estimate of the state. This control measure is used to help determine where the
state really is.
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Kalman filtering in conventional control theory is a form of optimal state
estimation that involves specific assumptions about the stochastic properties of
the disturbances, including the initial conditions. If we have done our situation
assessment by optimizing the state estimate for a particular class of disturbances
in the problem domain, we have the Kalman filter analogy. It is important to
note that the planner is likely to be less robust with a situation assessor in the
control loop, since there is an increased possibility for it to make errors. For
example, the planner might act before the situation assessor has adequately im-
proved its assessment. There is a similar loss of robustness in conventional
control theory when a state estimator is used instead of full state feedback. There
are, however, procedures for recovering the robustness properties in control
theory.

The separation principle in conventional control theory says that the control
law and state estimator can be designed separately; the state feedback control
law is designed as if the state were prefectly known. Then, when the designs are
combined, the behavior of the resulting system will be as good as if the control-
ler was designed all at once. Similar separation could exist between the designs
of the planning of control actions and the situation assessor.

Al Adaptive Planning Systems

In conventional adaptive control, the system identification unit determines
the changes to the plant and informs the controller designer, which changes the
control laws so that closed loop specifications are met. Ideally, an Al adaptive
planning system automatically models the problem domain and develops a plan-
ner that will solve the new problem in the domain. The structural analogy be-
tween the two is shown in Fig. 5.

A simpler adaptive planner begins with a model of the problem domain, and
if there are domain structural changes, it updates the model of the domain. This
is called world modeling. Using this updated model, the planner designer de-
cides if it is necessary to make changes to the current planning strategy so that
the problem represented by the new problem domain will be solvable. The Al
adaptive planning structure is used to implement metaplanning. Metaplanning,
discussed earlier, is examined in Wilensky (1983).

Notice that if the planner is not executing actions that excite the domain
properly, the world modeler and thus the planner designer may not be able to
perform their tasks. This is the problem of sufficient and persistent excitation in
conventional control theory. Note that world modeling is not always needed; a
planner designer can just change the strategy of the planner based on the occur-
rence of certain logical combinations of events. Notice also that the adaptive
planner can perform fault detection and identification and ultimate accommoda-
tion for the failure.
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FIGURE 5. Adaptive structural analogy.

One important difference between the two structures is that in the Al adap-
tive planning system there is an input from a human or other supervisory sys-
tem. A high-level goal that can be input at this level could be *‘go to manufactur-
ing facility 4 and work there”” (where it has never worked before). The adaptive
planner would plan to achieve this goal by going to the facility, developing a
world model, choosing a planning strategy, and forming subsequent plans and
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taking actions to solve problems so that low-level goals are met. The Al adaptive
planner is more autonomous than the others. Autonomy is a characteristic of
increasingly intelligent systems.

It is interesting to notice the similarities between the Al adaptive planner
architecture and the model of helping developed in Egan (1986). We give one
possible interpretation of the similarity here; many others are possible. Suppose
we have a “‘helper’” who is to aid in the solution of a problem by guiding the
actions of a “‘subject.” In Egan’s theory of effective helping the ‘‘Present Sce-
nario’’ corresponds to the problem representation of the problem that the subject
is trying to solve and the planner, which represents the problem solving strategy
of the subject. The ‘‘Preferred Scenario’ consists of the accurate problem repre-
sentation developed by the helper (world modeler) and the revised problem
solving strategy designed by the helper (planner designer) for the subject. The
““Action—Getting the New Scenario on Line”’ is the series of actions taken by
the world modeler and planner designer to implement the methods used in the Al
adaptive planner.

Issues Relevant to Al Planning Theory
from Intelligent Autonomous Control

The AI planners described in this report are special cases of intelligent
autonomous control structures. The area of intelligent autonomous control, stud-
ied from a control theorist’s viewpoint, has been called the intersection or inte-
gration of Al, operations research, and control theory (Fu, 1971; DeJong,
1983). It has also been pointed out that intelligent controllers are at the top of the
controller complexity scale and thus have the ability to solve increasingly diffi-
cult, poorly formulated, ill-structured problems (Saridis, 1979). Intelligent au-
tonomous controllers coordinate the use of higher-level decision-making pro-
cesses and conventional control techniques to control complex .dynamical
systems. An appropriate intelligent autonomous controller architecture and study
of fundamental issues in intelligent autonomous control have recently been com-
pleted (Antsaklis and Passino, 1988). The field of intelligent control is in its
infancy, yet some important ideas relevant to planning are valuable. We high-
light these here.

Planning systems are hierarchical. There are three levels in the hierarchy.
The lowest level is the execution level. At this level we find the system hardware
and highly numeric-algorithmic techniques in use. In the robot example, the
execution level contains the manipulator and the servomechanism that is used in
the gripper. The next level up is the coordination level. At this level various
execution-level controller actions are coordinated and supervised. It plans the
actions of the low-level algorithms and hardware. Some intelligent decision
making is used to perform the coordination and to interface to the highest level.
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In the robot example, the coordination level would coordinate the movements of
two manipulators so that they do not collide and plan their movements so that
together they achieve some task. The highest level, the organization or manage-
ment level, manages the systems actions and uses high-level decision-making
processes and learning. It guides the actions of the coordination level and dele-
gates duties to the various subsystems in the coordination and execution levels.
In the robot example, the management level would, for instance, decide that a
certain task needed two manipulators to achieve the goal efficiently. It is desir-
able to have hierarchical models to use with the hierarchical controller for com-
patibility reasons. Note that ‘‘hierarchical”” as used here has different meaning
from that in the section on Al planning systems.

As we go up the hierarchy, the model abstractness needed for the problem-
solving processes increases, and as we go down, the needed model granularity
increases. For example, differential equations are used to develop the gripper
control laws, while higher-level decision-making processes might use a rule-
based model of the robot’s environment. Both symbolic and numeric processing
and modeling are necessary.

The time scale density increases as we go from the management to the
execution levels. This occurs because the management level has a macroscopic
view of the actions that occur. It is not concerned with the details of force
feedback of the manipulator but is only concerned that the object was properly
moved. Consequently, the decision rate, or rate at which different parts of the
controller take actions, decreases as we go from the execution to the manage-
ment level.

CONCLUDING REMARKS

Although a foundation of fundamental concepts has been formed for Al
planning systems by drawing an extensive analogy with control theoretic ideas,
much work needs to be done to formalize mathematically the work presented
here. At best, the results of this paper raise many questions and clarify some of
the issues that may be important in quantitative studies of Al planning systems.
Extensive research must be done on developing particular methods for model-
ing, analyzing, and designing Al planning systems. Because the results in this
paper are independent of both domain and problem representation, they are
applicable no matter what modeling and analysis methodology is chosen as long
as the methodology provides for the study of the fundamental concepts devel-
oped here.

As it is quite fundamental to the quantitative study of Al planning systems,
the modeling issue must be addressed first. Various questions must be answered:
(1) What mathematical formalism should be used for the problem representa-
tion? (2) What is the expressive power of this formalism? That is, what class of
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problem domains can be modeled? (3) Does the formalism lend itself to analy-
sis, design, and implementation? Which properties of the models will be impor-
tant to study?

Second, systematic analysis methods must be developed so that planning
system behavior can be studied quantitatively within the developed modeling
framework. Before this is done, however, it will be important to determine what
is important to analyze. Are there properties other than the ones developed here
that need to be analyzed? It is also expected that planning methodologies that
lend themselves to analysis will have to be developed. The question of what
constitutes good planning system behavior must be answered. Finally, planning
system design must be addressed. It is hoped that a systematic procedure for
design is obtained—one that is similar in character to the control system design
process.
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