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Abstract—The endocrine differentiation of pancreatic ductal
epithelial cells is dependent upon their transition from a two-
dimensional monolayer to three-dimensional islet-like clus-
ters. Although clustering of these cells is commonly observed
in vitro, it is not yet known whether clustering results from
long-range signaling (e.g., chemotaxis) or short-range inter-
actions (e.g., differential adhesion). To determine the
mechanism behind clustering, we used experimental and
computational modeling to determine the individual contri-
butions of long-range and short-range interactions. Ex-
perimentally, the migration of PANC-1 cells on tissue
culture treated plastic was tracked by time-lapse microscopy
with or without a central cluster of cells that could act as a
concentrated source of some long-range signal. Cell migra-
tion data was analyzed in terms of distance, number of steps,
and migration rate in each direction, as well as migration rate
as a function of distance from the cluster. Results did not
indicate directed migration toward a central cluster
(p> 0.05). Computationally, an agent-based model was used
to demonstrate the plausibility of clustering by short-range
interactions only. In the presence of random cell migration,
this model showed that a high, but not maximal, cell–cell
adhesion probability and minimal cell–substrate adhesion
probability supported the greatest islet-like cluster forma-
tion.

Keywords—Diabetes, Islet cells, Differential adhesion,
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INTRODUCTION

Type I diabetes mellitus, also called insulin-depen-
dent and juvenile diabetes, is an autoimmune disease
characterized by the destruction of insulin-secreting
beta cells of the pancreas. This disease afflicts ap-
proximately one million individuals in the U.S.13 and is
increasing in incidence worldwide at an annual rate of
3–5%.19 Type I diabetes is traditionally managed by
exogenous insulin therapy, but this method has limited
ability to tightly regulate blood glucose levels and often
results in long-term complications. Alternative treat-
ments that may improve long-term outcomes include
whole pancreas or pancreatic islet cell transplantation,
but the annual supply of donor organs is severely limited
and therefore reserved only for severe cases.18,21,33 To
fill the unmet need for insulin producing cells and im-
prove long-term efficacy of treatment, researchers have
explored alternative sources of insulin-secreting cells
that include the self-replication of beta cells, differen-
tiation of progenitor or stem cells, and transdifferen-
tiation of related cell types toward a pancreatic
endocrine phenotype.2,5,12,27,30 The upregulation of islet
cell hormone genes (e.g., insulin, glucagon, c-peptide,
and somatostatin) and their secretion are associated
with clustering and the transition from a two-dimen-
sional monolayer to three-dimensional islet-like struc-
tures in vitro.5–7,24,37 Further supporting the importance
of the 3D structure is the observation that the secretory
responsiveness of cells in 3D clusters was lost upon
dispersal of the cells and established again after 3D islet-
like structures were reformed.24

Of the various cell types explored as a source of new
beta cells, pancreatic ductal epithelial cells (PDEC) are
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attractive candidates.4–6 During the normal develop-
ment of the pancreas, islet precursor cells initially bud
off of the ductal structures with evidence of transdif-
ferentiation of these PDEC to endocrine cells.29,31

PANC-1 cells are human epithelial-like adenocarcino-
ma cells that have been used as a model system for
PDECs because of this pancreatic ductal origin.14 This
cell line clusters when plated on culture dishes and
exposed to serum-free medium (SFM), and later shows
signs of endocrine differentiation by secreting C-pep-
tide, insulin, and glucagon.17

Little is known about how PANC-1 cells form mul-
ticellular clusters. Possible mechanisms can be broadly
categorized into those relying on long-range or short-
range interactions. Cell clustering by long-range inter-
actions involves some signal for mutual attraction fol-
lowed by directed migration of cells toward one
another. Perhaps the best-studied example of a long-
range signal mediating cell clustering is chemotaxis by
Dictyostelium discoideum.35 These single-cell organisms
release cAMP, collectively forming cAMP gradients,
then aggregate by migrating in the direction of in-
creasing cAMP concentration. Chemotaxis is not a be-
havior unique to D. discoideum, but has also been
suggested as a mechanism for directed migration for
Escherichia coli16,38 and in mammalian cell culture.22,26

Based on observations that PANC-1 cells in a Boyden
chamber migrated toward a source of fibroblast growth
factor two (FGF2) and that interfering with FGF2
signaling blocked aggregation, Hardikar et al. asserted
that PANC-1 cells use FGF2 as a paracrine chemoat-
tractant to mediate clustering.17 In addition to this type
of chemical signaling, mechanical cues may direct long-
range cell clustering as well. Cells on or in an extracel-
lular matrix can mechanically remodel the surrounding
matrix.10,36 The resulting anisotropic changes in matrix
density, matrix mechanics, and the alignment of fibrous
proteins25 have all been proposed as mechanisms by
which cells can direct their migration toward other cells
via haptotaxis, mechanosensing, or contact guid-
ance.25,36,40 In contrast to long-range interactions, cell
clustering could also result from short-range interac-
tions whereby cells migrate randomly, incidentally col-
lide, and intercellular adhesions form causing cells to
stick together. Boretti and Gooch suggested that short-
range mechanical interactions regulate the clustering of
primary human pancreatic epithelial cells based on their
observation that the relative strength of cell–cell vs. cell–
substrate adhesion was a primary regulator of cluster-
ing.5 This concept is akin to the ‘‘differential adhesion
hypothesis’’ that explains cell migration and sorting
during tissue morphogenesis.34

In the present study, we investigate whether clus-
tering of PANC-1 cells in vitro shows evidence long-
range signaling and whether differential adhesion

alone can support the formation of cell clusters in
computational models. We seek to understand the
mechanisms behind pancreatic cell clustering. This
understanding will facilitate informed decisions about
how to control clustering of pancreatic cells, improving
differentiation toward a secretory endocrine pheno-
type, and likely have implications for various other cell
types whose functions are dependent upon multicellu-
lar aggregation such as hepatocytes15,23 and embryonic
stem cells.1,8,20,28

MATERIALS AND METHODS

Cell Culture and Clustering

PANC-1 cells (American Type Culture Collection,
Manassas, VA) were cultured in serum-containing
medium (SCM) consisting of low-glucose Dulbecco’s-
modified Eagle medium (DMEM)with 10% fetal bovine
serum (FBS, Gibco/Invitrogen, Carlsbad, CA). Cell
clustering was induced by changing medium to SFM
consisting of a 1:1 mixture of DMEM and F12 supple-
mented with 1% (v/v) insulin transferrin selenium solu-
tion (ITS, Gibco/Invitrogen, Carlsbad, CA) and 1% (w/
v) bovine serum albumin (MP Biomedicals, Solon, OH).

Hanging-Drop Method for Forming PANC-1 Cell
Clusters

The hanging drop method was used to create pre-
formed clusters for experiments requiring initial cell
aggregates. When PANC-1 cells were initially seeded in
SCM, 45 aliquots (4 lL each) of cell-containing SFM
were pipetted onto the lid of a 100 mm tissue culture
treated plastic (TCTP) Petri dish (Fisher Scientific,
Pittsburgh, PA). Each 4 lL drop contained ap-
proximately ~40 cells for cultures at 10% confluence,
and ~20 cells for cultures at 5% confluence. The dish
was then inverted and incubated for 16–20 h. Imme-
diately before time-lapse imaging, cell clusters that
formed in the hanging drops were washed off the lid
with 1 mL SFM and added to the 35 mm Petri dish
containing PANC-1 cells at 10 or 5% confluence.

Time-Lapse Microcopy and Image Analysis

Cells were seeded onto 35 mm TCTP petri dishes
(MatTek, Ashland, MA) in SCM at ~10% confluence
(75,000 cells/dish) or ~5% confluence (37,500 cells/
dish) and cultured for 16–20 h. After this culture
period, culture medium was changed to SFM to allow
for cell clustering and 1 mL of SFM containing
PANC-1 cell clusters was added. Although the hang-
ing-drop method could potentially produce up to 45
clusters, fewer than 10 clusters were typically observed
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after their transfer to the Petri dish. If the experiment
contained clusters, a field of view was chosen such that:
(1) contained a cluster of the intended size (i.e., ~20 or
~40 cells), (2) there were no other clusters within
~5000 lm, and (3) the local confluence of PANC-1
cells was representative of the desired confluence (i.e.,
~5 or ~10%). All images were taken of a single field of
view using differential interference contrast mi-
croscopy with an Axiovert 200 M inverted microscope
(Zeiss, Thuringia, Germany) equipped with a 910
objective. The cells and microscope were housed in a
Marianas microscope enclosure that was maintained at
37 �C and 5% CO2 and rested on a vibration isolation
table. Images were taken every five min for 25 h and
captured using SlideBook software (3i Intelligent
Imaging Innovations, Denver, CO).

Analysis of Pancreatic Cell Migration

The Manual Tracking plug-in (Fabrice P. Corde-
lières, Institut Curie, Orsay, France) for ImageJ (W.
Rasband, NIH) was used to identify the coordinates of
the center of the cluster and surrounding cells every
five min. All data were recorded by the same person.
Cells were temporarily not tracked if they migrated
outside the field of view. Data from cells that appeared
to undergo apoptosis during the recorded time frame
were discarded. Small clusters, comprised of more than
two cells, made up less than 3% of cell tracks. Data
from the movement of these small clusters was ex-
cluded from analyzes because they were not as motile
single or joined pairs of cells. Individual cell tracks
were then imported into MATLAB (MathWorks,
Natick, MA) and analyzed using original code found
in the Supporting Material. This code allowed for the
full data set to be analyzed, or subsets of data de-
marcated by one of a variety of parameters including
the number of cells (e.g., single cells, pairs of attached
cells, etc.), cell fate, and the selection of a specific time
step. For a given time step, MATLAB determined H,
the direction of cell migration relative to the cluster
(Fig. 1e), as well as L, the distance migrated during a
single time step. The path length for a single cell was
calculated as the sum of all distances traveled each time
step. Data for distances traveled and steps were sorted
into bins, each bin representing movement in a par-
ticular direction in relation to the cluster. A step rep-
resents all movement in any direction for a single cell
during a single time step. This is distinct from a time
step, the length of time between data points. The bin-
ned data was then used to generate rose diagrams.
Migration rate within each bin was calculated by di-
viding the total distance traveled by cells in that di-
rection by the number of steps taken in that direction.
Cell migration data were combined from three inde-

pendent experiments (n = 3) for each condition: 10%
confluence with a cluster (171 cell tracks), 10% con-
fluence without a cluster (232 cell tracks), and 5%
confluence with a cluster (165 cell tracks).

Agent-Based Simulations

A more complete description of the rules of the
agent-based model, conditions simulated, and analysis
of simulation results can be found in the Supporting
Material. Briefly, agent-based modeling conducted in
NetLogo39 was used to simulate the in vitro clustering
of cells on a 2D substrate and explore the feasibility of
cell clustering in the absence of long-range interac-
tions. The in silico world in which this model exists
consists of a 50 9 50 9 7 arrangement of patches,
each of which is a unit cube with dimensions equaling
the diameter of a cell (20 lm), and wraps in the XY
plane. Substrate was only modeled on the base layer.
Cells were represented as individual spherical agents,
each centered in a unit cell, and possessed a limited
number of available actions regulated by strictly de-
fined rules. These actions included binding to other
cells, breaking bonds with other cells and moving
within the 3D tetragonal simulation space. Cells could
form up to six bonds, one at each of its four in-plane
sides and one at each of its two out-of-plane sides.

All simulations were run at 40% confluence, a value
chosen to help distinguish conditions that support clus-
tering and those that do not (see SupportingMaterial for
detailed explanation of parameter choice). The prob-
ability a cell would form a bond with a neighboring cell
was equal to the cell–cell adhesion probability (%). The
probability a cell would unbind was equal to 100% mi-
nus the cell–cell adhesion probability. Therefore, both
the probability of binding and unbinding add to 100%.
cell–substrate adhesion probability (%) was another
variable in the model. Similar to cell–cell adhesion, cell
substrate adhesion and de-adhesion probabilities sum to
100%. Cells adhered to the substrate were restricted
from climbing from the base level to the second level.
Although cell–substrate adhesion probability may in
reality affect other cell behaviors such as migration, this
coupling was not included in the model. Cell–cell adhe-
sion probability was explored at seven levels (0, 10, 30,
50, 70, 90, and 99%) and cell–substrate adhesion prob-
ability at seven levels (0, 10, 30, 50, 70, 90, and 100%) for
a total of 49 unique combinations. Ten independent
simulations were run for each combination. A cell–cell
adhesion probability of 100% was not evaluated as the
cells would have rapidly bound together and been unable
to unbind or move thereafter. The probability of
movement had a moderate influence on cluster size and
density, but was not explored systematically for these
experiments and was set arbitrarily at 50%.
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All models were run for 15,000 iterations, a suffi-
cient duration for all conditions to reach equilibrium.
One iteration represents the application of all relevant
rules to all cells. Equilibrium was chosen as the end-
point because different simulations approached equi-
librium at different rates. By ensuring all simulations
had reached equilibrium, relative differences between
results would not be simulation time dependent. All
rules in our model were probabilistic, and the order of
the cells to which the rules were applied each iteration
was random. Therefore, even simulations with identi-
cal initial conditions almost certainly had different
outcomes. Three approaches were used to quantify the
degree of clustering: (1) average cluster size
(cells/cluster), (2) average height, and (3) compactness.
Average height provides a measure of three-dimen-
sionality and was calculated by dividing the total
number of cells in a cluster by its footprint (i.e., area in
patches a cluster occupies on the base level). Com-
pactness describes how efficiently the cells are packed
and is defined in detail in the Supporting Material.
Even for simulations at equilibrium, measured average
height and compactness varied moderately with time,
and therefore the average values for the final 1000-
iteration range (i.e., iteration 14,001–15,000) were
recorded. Average cluster size was more stable with
time and was calculated after the final iteration. Only
data from simulations that had reached equilibrium
are reported here, the criteria for which is described in
detail in the Supporting Material.

Statistics

Statistical analysis was performed using SPSS v. 22
(SPSS, Chicago, IL). Significance was determined us-
ing a one-sample t test. Bonferroni correction was used
to adjust the p value for multiple comparisons. Error
bars shown represent the standard deviation or 95%
confidence interval. Rose diagrams were generated in
MATLAB and mean resultant vectors were calculated
using the circular statistics (directional statistics)
toolbox.3 The mean resultant vector is the sum of a
collection of vectors, each with a magnitude and di-
rection. The magnitude of the mean resultant vector is
presented as a percentage of the sum of the magnitudes
of its constituent vectors.

RESULTS AND DISCUSSION

PANC-1 Cells Do Not Exhibit Preferential Migration
Toward Cell Clusters

Consistent with previous observations,5–7,12,24,37

PANC-1 cells at and near confluence formed 3D

multicellular clusters when cultured in SFM (Supple-
mentary Movie S1). In an attempt to explain the six-
fold increase in migration rate and subsequent
clustering of pancreatic cells upon the removal of ser-
um, Hardikar et al. suggested that serum could contain
‘‘inhibitory factors’’ that restrict cell migration.17

Though not directly inhibitory, serum contains pro-
teins (e.g., albumin and fibronectin) that can adsorb
onto TCTP and alter the adhesiveness of the surface.9

Exchanging the SCM for SFM may alter the compo-
sition of adsorbed proteins and could reduce its ad-
hesiveness. A less adhesive surface might allow cells to
migrate more freely, increasing the opportunity for
cells to contact each other and form clusters. However,
it is not known to what extent removal of serum alters
the likelihood and stability of intercellular adhesions.
The high cell densities used for Hardikar’s ex-
periments, however, are not practical for testing the
hypothesis that clustering results from long-range
mutual attraction between cells. This is because cells
start out in close proximity to, and sometimes in
contact with, several cells. Cell migration and the un-
known effect of cell–cell distance on long-range sig-
naling add further complexity. As a result, the
direction in which a cell would be expected to move
cannot be easily or adequately predicted based on the
location of multiple migrating neighbors. To simplify
this system: (1) the initial seeding density was reduced
to ~10% confluence and (2) a preformed cluster of
PANC-1 cells was added to act as a concentrated
source of any long-range signal that might exist. If
PANC-1 cells cluster by long-range signaling, indi-
vidual cells would be expected to migrate preferentially
toward the preformed cluster. This same experimental
design without a preformed cluster was used as a
control. The positions of individual PANC-1 cells,
pairs of joined cells, and the central cluster were then
tracked in five min intervals for 25 h (Fig. 1). For ex-
periments without a central cluster, an arbitrary cen-
tral point was used as a reference point for the
migration of cells. Movement was tracked in relation
to the center of the central cluster at the time of
measurement, not in relation to the edge of the cluster.
Thus, data was not adjusted due changing size or shape
as well as modest migration of the cluster. For each
condition, the total distance all tracked cells migrated
in different directions relative to the cluster was plotted
as a rose diagram and used to calculate a mean resul-
tant vector (Figs. 2a and 2b). The magnitude and di-
rection of the mean resultant vector were used to assess
whether cells exhibited preferential migration.
Specifically, the projection of the mean resultant vector
onto the unit vector toward the cluster, or dot product,
represents the overall percentage of migration toward
the cluster. Since there do not exist established criteria

Pancreatic Epithelial Cells Form Islet-Like Clusters 499



for determining critical values for statistical sig-
nificance in directional data, we have chosen 1%
overall migration toward a cluster. To clarify the re-
sults reported below, the magnitude of the mean re-
sultant vector is reported within parentheses, not the
overall percentage of migration towards the cluster.
For this initial experiment, the mean resultant vector
did not indicate preferential migration toward the
cluster and in fact showed that there was greater net
migration away from the cluster (5.88%) than away

from an arbitrary central point in the control ex-
periments (1.30%). One possibility for not detecting
directed migration toward the cluster is that for a given
cell, directional signals from nearby cells might mask
the influence of the more distant cluster. To guard
against this possibility and reduce the potential
masking effect of nearby cells the seeding density was
reduced further to ~ 5% confluence (Supplementary
Movie S2). Still, at this reduced density, net migration
toward the cluster was not detected (Fig. 2c). A similar

FIGURE 1. Tracking PANC-1 cell migration. PANC-1 cells cultured at 10% confluence with a central cluster imaged at 0 h (a) and
after 24 h (b). (c) The corresponding cell tracks throughout this time period. (d) The same cell tracks after applying a motility filter.
(e) Illustrative example depicting how the chemotactic index is calculated. The straight solid black lines (L1–L4) represent the
displacement recognized by the MATLAB code during each time step. D0 and Df represent the initial and final distance to the cell
cluster, respectively. During the first time step the cell moves a straight-line distance L1 at an angle H1 with respect to the cluster.
Subsequent steps are labeled L2–L4. The chemotactic index is calculated by dividing the change in distance to the cluster (Df–D0)
by the path length traveled (

P
L1–4).
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analysis was performed examining total number of
steps (Figs. 2d–2f) and the average migration rate
(Figs. 2g–2i) in different directions relative to the
cluster. Average migration rate was calculated by di-
viding the distance traveled in a given direction by the
total number of steps taken in that same direction.
Only for average migration rate did the mean resultant
vector point toward the cluster (Figs. 2h and 2i), yet
the magnitude was small (<1%) and therefore not
strongly suggestive of directed migration.

The most straightforward interpretation of these
data is that long-range signals are not involved.
However, the mean resultant vector is only one metric
for this rich set of data and not adequately rigorous to
support broad conclusions about the presence/absence
of preferential migration. One potentially important
parameter ignored by the mean resultant vector
method is the effect of a cell’s distance from the cluster,
a potential source of chemoattractant. For example, if
a cell were too close to a source of chemoattractant the
cell’s receptors could become saturated and the cell
would lose its ability to sense the gradient.16,38 Alter-
natively, if a cell were too far from the cluster the
concentration of the chemoattractant could be too low
for the cell to detect. To visualize the effect of distance
from the cluster on cellular migration rate toward the
cluster, we broke down each cell track into its indi-
vidual steps, then segregated these steps by the cell’s
distance from the cluster at the beginning of the step
(Fig. 3). These segregated steps were binned in 50 lm
intervals up to the edge of our field of view, 600 lm
from the center of the cluster. Since clusters were
roughly 100 lm in diameter, cells could not be tracked
within 50 lm from the center of clusters. When ac-
counting for multiple comparisons using Bonferroni
correction, none of the results achieved statistical sig-
nificance (p> 0.05). However, because Bonferroni
correction is highly conservative and due to the high
number of comparisons (i.e., 21), correcting for mul-
tiple comparisons might hide truly significant results.
Therefore, we have also chosen to present the data
without correcting for multiple comparisons. In six

cases average migration rate was away from the central
cluster (p< 0.05). Interestingly, four of these six cases
were for cells at 10% confluence between 100 and
300 lm from the central cluster. For only one condi-
tion, 5% confluence with a central cluster, and for cells
between 350 and 400 lm away from the cluster, was
average migration rate toward the cluster significant
(p = 0.013).

We then analyzed our data by calculating the
chemotactic index, also referred to as the McCutcheon
index, a measurement that has been used previously to
reveal collective cell migration toward a chemotactic
source.22,26,35 This index was calculated for an indi-
vidual cell by dividing the cell’s change in distance
from the cluster by its path length (Fig. 1e). The result
is a value between +1 and �1, where +1 signifies all
movement was directly toward the cluster, �1 signifies
all movement was directly away from the cluster, and 0
signifies that though the cell may have moved, it ended
up the same distance from the cluster as when tracking
was started. Values for the chemotactic index of indi-
vidual cells (Fig. 4) conformed to a bell-shaped dis-
tribution. In all cases, collective migration with respect
to the cluster was not significant (p> 0.05) (Table 1).

Next, we carefully dissected our methods to assess
aspects that might influence the quality of our data and
potentially impact our findings. Empirical testing of
the reproducibility of manually tracking cells suggested
that variability in the assignment of cell position could
be up to several microns. Considering the actual dis-
tance and direction of cell migration as the signal, this
variability would represent noise that could impact the
measured distance and direction of cell migration. This
noise would be especially pronounced if the distance
moved by a cell during an interval was small and could
mask preferential migration toward a cluster. To in-
crease the signal-to-noise ratio, two strategies were
used: (1) applying a threshold to remove cell migration
below 10 lm in a 60 min period and (2) using longer,
30 min intervals. Applying this threshold removed
~60% of cells steps; however, it appeared to preserve
most of the steps in which cells migrated (Figs. 1c and

TABLE 1. Mean chemotactic index values.

Analysis Experiment Mean ± SD p value

All Data 10% confluence �0.036 ± 0.337 0.172

10% confluenceNo cluster �0.006 ± 0.276 0.753

5% confluence �0.028 ± 0.310 0.245

Motility Filter 10% confluence �0.045 ± 0.479 0.149

10% confluenceNo cluster �0.020 ± 0.441 0.428

5% confluence �0.034 ± 0.485 0.277

30 Min Intervals 10% confluence �0.067 ± 0.429 0.052

10% confluenceNo cluster �0.006 ± 0.374 0.806

5% confluence �0.030 ± 0.397 0.330
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1d). Mean chemotactic indices were calculated after
applying both of these strategies and did not reveal the
presence of preferential migration (Table 1). Rose
diagrams corresponding to this data are available in
the Supporting Material (Fig. S1).

Some analyzes revealed statistically significant mi-
gration away from the cluster. These findings have a
few possible explanations. First, over the course of
experiments clusters gradually flattened (Figs. 1a and
b) and some cells separated then migrated away
(Supplementary Movie S3). The tracking of these cells
was no different from other cells, although these cells
were few. Second, for cells that do not bind to the
cluster, the cluster might obstruct the migration of
cells, thus biasing subsequent migration away from the
cluster. This might explain migration away from the
cluster for cells at 5% confluence between 50 and
100 lm from the cluster (Fig. 3). Third, migration

away from a cluster may indicate a rarely observed
phenomenon termed fugetaxis. Instead of producing
chemoattractant, cells in a formed cluster may produce
chemorepellant, perhaps for the purpose of limiting
cluster size. An additional concern is the presence of
spontaneously formed small clusters that might act as
additional sources of some long-range signal and in-
fluence the migration of nearby cells. However, be-
cause the number of these small clusters is few (<3%)
and their size small relative to the central cluster we
would not expect their presence to prevent the detec-
tion of directed migration.

Agent-Based Modeling Suggests Cell Clustering Might
Result from Short-Range Interactions

The balance between cell–substrate and cell–cell
adhesiveness, or differential adhesion, was proposed as

FIGURE 2. Polar histograms of cell migration data. Data was analyzed by total distance migrated (a–c), total number of steps (d–
f), or average migration rate (g–i) in relation to the central cluster or in relation to an arbitrary central point if there was no cluster.
The direction toward the central cluster (solid arrow) and mean resultant vector (dashed arrow) are overlain on each figure. For
experiments without a central cluster, the solid arrow points to an arbitrary central point. The magnitude of the mean resultant
vector is included in each panel (range 0–100%).
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a potential regulator of cell clustering. We developed
an agent-based computational model to assess this
idea. In the model, simulated cells could migrate, bind
to the substrate, and bind to each other. Importantly,
in this model there is no mechanism for long-range
cell–cell communication. Cell–cell and cell–substrate

adhesion strengths were modeled as probabilities and
were the primary independent variables in the model.
Clustering was quantified with three measurements: (1)
average cluster size, (2) average height (3-dimension-
ality), and (3) compactness (packing efficiency). Three
measurements were necessary because just one does
not adequately characterize the state of the system. For
example, a cluster that is large could be tall and
compact, short and spread, or a patchy monolayer of
cells. Average height and compactness are metrics that
serve to differentiate between these different manifes-
tations of clusters.

To help describe the predominant effects of cell–
substrate and cell–cell adhesion probabilities and
demonstrate the diversity of observed results, a few
selected examples will be discussed. At 0% cell–sub-
strate probability, the least degree of clustering oc-
curred at 0% cell–cell adhesion probability (Fig. 5b).
Increasing cell–cell adhesion probability to 50% only
modestly increased average cluster size, height, and
compactness (Fig. 5c). Values for average height and
compactness peaked at 90% cell–cell adhesion prob-
ability (Fig. 5d) then declined as cell–cell adhesion
probability approached 99% (Fig. 5e). However, av-
erage cluster size continued to increase up to the

FIGURE 4. Chemotactic index values. Chemotactic index values for all cell tracks as a function of distance from the cluster. The
histogram represents the number of points within each 0.2 chemotactic index range.

FIGURE 3. Average migration rate. Average migration rates
toward (positive values) or away from (negative values) the
cluster as a function of distance from the cluster. Error bars
represent the 95% confidence interval.
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maximum value for cell–cell adhesion probability.
Regardless of cell–cell adhesion probability, as cell–
substrate adhesion probability was increased cells were
increasingly inhibited from climbing. This resulted in
the formation of clusters that were flatter and less
compact, but larger as clusters merged together
(Fig. 5f).

Simulation results reveal that both cell–cell and cell–
substrate adhesion probabilities influence the presence
and extent of cell clustering (Fig. 5). Consistent with
the explanation provided by differential adhesion, in-
creased clustering occurs at higher cell–cell adhesion
probabilities. At these higher cell–cell adhesion prob-
abilities, low cell–substrate adhesion favors the devel-

FIGURE 5. Agent-based model simulation results. (a–f) Unbound cells possess no cell–cell bonds, are labeled red, and may move
within the simulation space to unoccupied neighboring sites. Cells that possess at least one cell–cell bond are color-coded
depending upon the level they occupy from dark blue on the base level to pink at the uppermost level. Cells on successive levels
are offset 0.5 patches in the X and Y directions. (a) As examples, cell one has no neighbors and therefore its movement is
unrestricted. Cell two may move freely within its current plane up, right and down. Depending on the cell–substrate adhesion
probability, cell two may also move left by climbing to one of two potential locations (arrows). Since there is no substrate above the
base layer, to climb, these locations must be supported by four cells and be unoccupied. Four cells support both leftward
locations, but one of these locations is occupied by cell three leaving just one location that cell two may climb to. Cell three is an
unbound cell on level two with no neighbors. If cell three moves down, it will remain on level 2. If cell three were to move right it
would no longer be supported by four cells and would fall to level 1. (b–f) Images from a selection of simulations after reaching
equilibrium that demonstrate the diversity of observed results. Cell–cell adhesion probability (C–C) and cell–substrate adhesion
probability (C–S) are labeled on each panel. Clustering was quantified using three measurements: cluster size (G), compactness
(H), and average height (I). Data are presented as topographic plots and labeled to highlight the data corresponding to panels (b–f).
For scale, cell diameters are 20 lm.
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opment of clusters that are thick (in the z direction)
and compact (few void spaces), while high cell–sub-
strate adhesion favors large interconnected patches of
cells in a monolayer (Figs. 5g–5i).

Though most combinations of cell–cell and cell–
substrate adhesion probability did not support the
formation of clusters, the optimal 3D clusters formed
with the minimum value for the cell–substrate adhe-
sion probability and a cell–cell adhesion probability
between 70 and 99% (Supplementary Movie S4).
Clustering was more pronounced (i.e., larger, thicker
clusters) at these same conditions when confluence was
increased to 75% (Supplementary Movie S5). These
results suggest that that differential adhesion is a
plausible mechanism by which PANC-1 cells might
cluster in the absence of other influences.

CONCLUSION

This study may be the first study to track single
PANC-1 cell migration during conditions that support
clustering. In our analyzes, we did not observe directed
migration in any of our experiments. Instead, our results
are consistent with previous examples of cells moving in
persistent random walks.32 Additionally, our agent-
based model based on differential adhesion demon-
strated that clustering can occur in the absence of long-
range interactions and identified certain conditions that
are more favorable toward the generation of three-di-
mensional clusters. A low cell–substrate adhesion
probability and high cell–cell adhesion probability al-
lowed clusters to form that were of moderate size,
round, and 3D. Although these in vitro experiments did
not identify a mechanism for PANC-1 clustering, the
computational experiments give credence to alternate
possibilities such as differential adhesion.

Together, our experimental and computational re-
sults can provide some suggestions for researchers
trying to facilitate the clustering of cells in vitro.
Though a moderately adhesive surface is known to
support the greatest rates of cell migration,11 conse-
quently increasing the frequency of cell–cell collisions,
an overly adhesive surface will inhibit the formation of
3D clusters by not allowing cells to detach. Therefore,
the choice of substrate and cell culture media should be
carefully considered for their impact on cell–substrate
adhesion. In addition, our computational results sug-
gest that the relative strength of cell–cell and cell–
substrates influenced not just the size of the cluster but
its compactness and average height, which could po-
tentially modulate differentiation toward endocrine
phenotype. The cumulative knowledge learned from
this and other PANC-1 cell models will likely extend to
therapeutic cell lines and could potentially increase

pancreatic endocrine differentiation and the produc-
tion of hormones by these cells for the treatment of
type I diabetes.

ELECTRONIC SUPPLEMENTARY MATERIAL

The online version of this article (doi:
10.1007/s12195-015-0396-5) contains supplementary
material, which is available to authorized users.
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