
Cooperative Task Scheduling
for Networked Uninhabited
Air Vehicles

ALVARO E. GIL

KEVIN M. PASSINO, Fellow, IEEE

SRIRAM GANAPATHY
The Ohio State University

ANDREW SPARKS
Air Force Research Laboratory

In the work presented here, we study a cooperative control

problem for a network of uninhabited air vehicles (UAVs) where

it is assumed that after deployment a set of tasks is given to a

group of UAVs and the UAVs must cooperate to decide which

UAV should process each task. The cooperation must occur

during real-time operation due to a need to repeatedly process

each task, in spite of imperfect communications (e.g., messages

with random but bounded delays), and the possibility that tasks

“pop-up.” We show how to view this as a cooperative scheduling

problem, and how to derive bounds on mission-level performance

metrics. Simulations are used to compare the approach with a

noncooperative strategy and to provide design guidelines for the

cooperative scheduler.

Manuscript received February 9, 2006; revised September 1, 2006;
released for publication March 5, 2007.

IEEE Log No. T-AES/44/2/926540.

Refereeing of this contribution was handled by T. F. Roome.

This work was supported by the AFRL/VA and AFOSR through
the OSU Collaborative Center of Control Science under Grant
F33615-01-2-3154. Partial support was also provided by NIST.

Authors’ current addresses: A. E. Gil, Xerox Corporation, Webster,
NY; K. M. Passino, Dept. of Electrical Engineering, The Ohio
State University, 411 Dreese Lab, 2015 Neil Ave., Columbus, OH
43210-1272, E-mail: (k.passino@osu.edu); S. Ganapathy, General
Motors Global Research and Development, Honeoye Falls, NY;
A. Sparks, AFRL/VACA, 2210 8th St., Wright Patterson AFB, OH
45433-7531.

0018-9251/08/$25.00 c° 2008 IEEE

I. INTRODUCTION

Groups of possibly many uninhabited air
vehicles (UAVs) of different types, connected via
a communication network to implement a “vehicle
network,” are technologically feasible and hold the
potential to greatly expand operational capabilities
at a lower cost (e.g., due to the economies of scale
gained by manufacturing many simpler vehicles).
Cooperative control for navigation of such vehicle
groups involves coordinating the activities of several
agents so they may work together to complete tasks in
order to achieve a common goal. The coordination
can occur via a communication network and the
goal could be to optimize the task completion rate.
Cooperative control can be useful in a variety of
applications including multi-processor computing
systems, networked flexible manufacturing systems,
and multiple electronic receivers being coordinated
to locate multiple radar emitters in an uncertain
environment. Here, we study the use of “cooperative
scheduling strategies” [1] for coordinating UAVs
to perform tasks in a way that tries to minimize the
time it takes to complete them, while at the same
time trying to perform especially quickly the most
important tasks. A mission scenario is provided in
which this approach has direct applicability; however,
we also explain how the problem we solve arises
as a key component of more general scenarios. We
provide a theoretical analysis of the properties of the
cooperative control system and also provide insights
into the effects of communication imperfections on
the ability to cooperate effectively. Our simulations
compliment these insights and give design guidelines
for tuning the controller. An early abbreviated
treatment of this work appeared in [2].
There is a significant amount of current research

activity focused on cooperative control of UAVs.
Solutions to general cooperative control problems
can be obtained via solutions to vehicle route
planning (VRP) problems [3]. While VRP methods
can be used to allocate UAVs to tasks in order to
minimize the mission completion time, generally
the methods are only applicable when uncertainties
are not present in the environment. Moreover, VRP
formulations generally consider a finite number of
tasks to be completed in a finite time (unlike here).
Receding horizon control approaches are studied in
[4]—[7]. Work focusing on cooperative search and
coordinated sequencing of tasks include [6]—[11]
and the “map-based approaches” in [12]—[19]. Using
such approaches, significant mission performance
benefits can be realized via cooperation in some
situations, most notably when there is not a high
level of uncertainty. Here, we show how to cope
with a type of uncertainty that enters in the form
of imperfect communications modeled as random
but bounded delays on messages communicated to

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 2 APRIL 2008 561

coordinate activities. Due to the presence of so much
uncertainty it is generally not possible to accurately
predict far into the future, and hence generally
not useful to employ optimization approaches to
develop long sequences of planned coordinated
operations either off- or on-line (as in many of the
above-mentioned studies). It is well known that the
complexity of coordinated sequencing/planning is
significant when there are, for instance, many UAVs
and tasks (e.g., consider the complexity analysis
of VRP problems in [3]); however, with significant
uncertainty arising from communications, coordinated
sequencing/planning of long sequences of tasks is not
useful anyway so in this case the challenge should
often not even be confronted (predictions can be so
inaccurate and result in such poor decisions that it
is simply better not to predict ahead). Instead, the
challenge is to overcome the effects of uncertainty
so that benefits of cooperation can still be realized.
Hence, when uncertainty dominates we are not able
to achieve the high level of coordination achieved
in many of the above-mentioned studies; we simply
seek to achieve some benefit from cooperation.
Moreover, all the above techniques assume perfect
communications. This differs from the approach
taken here since our goal is to implement cooperative
scheduling strategies that can cope with imperfect
communications. Furthermore, this paper pays
attention to the amount of information shared
through the communication network, scalability
issues when the number of UAVs and tasks are high,
and real-time implementation of the scheduling
strategies. Recent work, however is beginning to
focus on the case where there are communication
imperfections. In this respect three notable studies
are in [20] where the authors consider the problem of
dynamic reassignment of tasks among a cooperative
group that communicates relevant information
asynchronously with arbitrarily finite delays, [21]
where the authors study the synchronization of
information for cooperative control, and [22] where
the authors study a task load balancing approach
to cooperative control when there are network
delays.
There is an important connection between

collective robotics and the work here that could be
useful for manufacturing systems. The design of
collective autonomous agents has received significant
attention and an overview of the research directions in
this field can be found in [23]. Studies of the behavior
of robot teams communicating over a network are
found in [24], [25]. In [26], the authors study how
optimality, stability, and communication network
issues in autonomous agents working in an uncertain
environment (i.e., uncertainties in the system states
due to communication delays, in the strategies, and in
the pay-off resulting from the agent choices) affect the
group performance metric.

Of all the current work in cooperative control, the
most closely related to this study is the “persistent
area denial (PAD)” problem studied in [27]. In [27],
pop-up targets are modeled as Markov chains and
cooperative control strategies are implemented to
reach all targets in the shortest time. The allocation
of UAVs to targets depends on both the distance to
the targets and the remaining time of the target’s
appearance. Our problem is a type of PAD problem.
Here, our N tasks need to be revisited by M UAVs
(M <N) as quickly as possible in a coordinated
manner in spite of communication imperfections (in
[27] perfect communication is assumed). Although
our work does not consider probabilistic pop-up
targets exactly as in [27], the theoretical analysis of
the cooperative scheduling strategy defined here still
holds for the processing of pop-up tasks under certain
special conditions. For instance, suppose that for each
task, if it is not present at the current time, it will
pop up within a fixed number of time units. Delays
in task appearance could be due to environmental
characteristics, the UAV’s sensing limitations, or
delays in getting task information from other sources
(e.g., a sensor on a high-flying platform). If we
know lower and upper bounds on the amount of time
between each task’s appearance, then we can use
this information in our theoretical analysis to derive
stability results for the case of pop-up tasks.
The scheduling strategies proposed here provide

what is generally a suboptimal solution that seeks to
pay attention to high priority tasks and the inter-task
travel times at the same time. However, a “global
optimal solution” is not likely to be feasible, even if
we had perfect communication capabilities, since it
requires the solution to a high-dimensional nonlinear
optimization problem to pick vehicle paths over an
infinite time horizon. Moreover, since we consider the
case where there are imperfect communications and
the possibility of pop-up tasks, a global optimization
approach to design is infeasible. The strategies defined
here are inexpensive from a computational point of
view since the distributed decisions are only based on
the computation of either a maximum or an average
value of both the ignored time of processing tasks and
inter-task travel times. The cooperative scheduling
strategies can easily be utilized independent of the
number of UAVs. In fact, there is always just one
computation involved in the decision-making process
(i.e., a maximum or average value) and the number
of the elements considered in the computation on
each UAV 1) decreases when the number of the
UAVs increases (since for a fixed number of tasks,
if there are more UAVs, then typically the number of
elements considered in the strategy is smaller), and
2) increases when the number of tasks increases.
Hence, the computations needed for real-time
implementation of these cooperative scheduling
strategies do not expand exponentially when the

562 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 2 APRIL 2008

number of UAVs or tasks increases (i.e., our approach
is “scalable”).
In this paper, our focus is on modeling a

cooperative control problem that has communication
imperfections (Sections II and III) and then
introducing some strategies (Section IV) that seek
to schedule the next task a UAV should perform to
avoid ignoring high priority tasks for too long and
yet minimize travel time to perform tasks. We then
prove in Section V that for such a strategy, even in
the presence of delays in communications, we can
find a bound on the longest time that the UAVs will
ignore any task. This bound, which is a function of
the cooperative control problem parameters, provides
insights into how, for example, inter-task distances,
the number of UAVs, and communication delays
will affect the dynamics of cooperation and mission
performance objectives. Simulations in Section VI
are used to evaluate the performance of the approach
and to provide some design guidelines. Section VII
explains how the problem arises as a key component
of other cooperative control problems and concluding
remarks are provided in Section VIII.

II. COMMUNICATION IMPERFECTION SOURCES
AND UNCERTAINTIES IN THE ENVIRONMENT

Since our work represents a significant departure
from cooperative control based on perfect information,
in this section we overview a number of sources of
communication imperfections and environmental
uncertainties for networked UAVs. This will help to
justify some of the details of our problem formulation
in the next section, and motivate the importance
of explicitly taking into account communication
imperfections for cooperative control. Moreover, it
shows why it is important to perform comparative
analysis with a noncooperative controller, something
we do in our simulations.
First, the network may have a communication

topology that is not fully connected in the sense that
each UAV may not be able to directly communicate
with every other UAV. Also, each inter-vehicle
communication “link” may be imperfect in that
there may be delays or bandwidth constraints in
sending or receiving information, misordering of
messages/information, or noise that corrupts the
information. Centralizing the information gathered
by the group of UAVs for the purpose of coordinating
their actions is a natural approach in networked UAVs;
however, centralization of information (e.g., via one
special UAV) does not overcome the problem of
the presence of imperfect communications since a
centralized location would have to be communicated
with anyway in order to share information and
coordinate actions. Moreover, it may not be possible
to have one central place to keep all information as
if this central place is one special UAV there is a

problem with fault tolerance of the whole system (if
there is a problem with the special UAV the whole
system may not be able to function). Moreover, it is
typically not possible to keep all information at the
“home base” as it may be out of communication range
and full autonomy is not achieved.
Imperfect communications arise from many

sources. First, there is no perfect communication
network in spite of recent and envisioned advances in
communication network technology. Link bandwidth,
delays (e.g., random but bounded ones), and noise are
significant problems. The communication topology
may vary with time in unpredictable ways. The need
for network security typically makes these problems
even worse (e.g., there are more significant delays
due to the need for encryption in some cases). Even
typical envisioned networks for aircraft can have
communication delays between 1—4 s, with problems
in message misordering. It is not clear at this time
what bandwidth will be possible (for some envisioned
cooperative control methods the bandwidth is more
than sufficient); however, a reasonable approach to
avoid confronting that constraint is to avoid the need
for passing extraordinary amounts of information
(e.g., high resolution images) when there are hard
real-time constraints.
It is also important to recognize that

communication imperfections can arise from sources
other than the physical network itself. For instance,
if “line-of-sight” is needed for the communication
technology (as is the case for some aircraft-aircraft
communication systems), then as a group of UAVs
moves there could be occlusions due to, for example,
the terrain. Moreover, in some envisioned systems
there will be “range constraints” on communications
(e.g., due to power limitations on communications)
that could easily lead to dynamic breaking and
reestablishment of communication links (i.e.,
communication topology changes). In some contexts,
such effects may be modeled as communication delays
that can be of quite a significant length of time (e.g.,
minutes or more). Next, note that in some missions
there may be a need to periodically communicate with
the home base to have a type of partially autonomous
“semi-tele-operated” UAV. One good example of
this is when UAVs are sent on a mission but are not
allowed to automatically “classify” targets/threats, and
then attack based on their conclusions. Instead, UAVs
are required to send sensor data back to a home base
where humans will do the classification. The UAVs
then have to wait for a response from the humans in
order to take any actions such as attacking a target.
Delays of this sort can often be modeled as a type of
communication delay. To see why, first view the home
base as another “agent” in the group of UAVs. Next,
the delay induced by the humans can be modeled as
a lag in getting a response over the communication
link with the home base. Clearly, in this case the

GIL ET AL.: COOPERATIVE TASK SCHEDULING FOR NETWORKED UNINHABITED AIR VEHICLES 563

delays could be on the order of 10 min or more.
More money can be invested to alleviate some of the
limitations of the physical communication network,
but these other problems can be more significant and
difficult to solve.
Uncertainty in the environment arises from having

imperfect information about the tasks that need to
be processed by the UAVs or malfunctioning of the
UAVs’ devices. For instance, once a UAV is pursuing
a task, it may need to travel to where the task is;
however, if this UAV only knows that the task to
process is within a specific area (due to imperfect
sensor information), then this UAV may spend more
time trying to search for the task location than what
the UAV originally estimated. Another clear example
related to the environment is the pop-up type task.
In this case the UAV can be ready to process the
task but it needs to wait for the appearance of the
task in order to start the processing of it. Thus,
there is a time delay related to these uncertainties.
There may be cases where the UAVs need to have
their local clocks synchronized by a global clock.
Desynchronization of the local clocks, which could
be viewed as a malfunctioning device, could lead
the UAVs to incorrect decisions that would affect the
performance of the whole group of UAVs.
In summary, we see that there can be significant

uncertainties in communications and the environment.
Cooperation requires shared information, either via
a priori information or communication of information
gathered during a mission. If that information is
not perfect then we naturally expect to achieve
lower levels of cooperation and hence performance.
Uncertainty creates a type of passing of “bad
information” that typically leads to poor group
decision making, and if the information is quite
poor it could be worse to try to cooperate than to
simply take a noncooperative approach where no
communications are required. This last statement is
justified in the context of the problem we study via
both our theoretical and simulation-based analysis.

III. PROBLEM STATEMENT

Suppose that there are several UAVs that need to
process a set of tasks where processing a task requires
a UAV to go to a certain location in a region of finite
size. Here we assume that a set of UAVs is given
a number of tasks, their respective locations, and
characteristics (e.g., the priority of each task). It is
assumed that the tasks must be repeatedly visited and
processed (e.g., for repeated surveillance of points
spread across a large region where the points of
interest are more numerous than the number of UAVs)
[27]. UAVs must work together autonomously in order
to maximize the rate of task processing for the highest
priority tasks.

A. Tasks, Prioritized Time, and Processing Time

Suppose that the number of tasks is fixed and that
we number and denote them as P = f1,2, : : : ,Ng.
Assume that the number of UAVs is constant and
we number them and denote the set of UAVs as
Q = f1,2, : : : ,Mg where N >M. If N ·M, then
depending on the spatial task distribution, at least one
UAV can be dedicated to each task or each UAV’s
processing capability can be coordinated in such a
way that each one visits several tasks. Let pi, i 2 P
denote the priority (importance) of processing task
i. Let t denote time. Let Ti(t), i 2 P, t¸ 0 denote the
“prioritized time” since last processing of task i, and
ti denote the time since the last processing of task i
(e.g., if task i was last processed at time zero then
the quantity Ti(t) = piti is its “prioritized time”). We
assume that there is a cooperative scheduling strategy
that decides which task a UAV should process next.
Assume that there is a global clock (e.g., via GPS)
that keeps all the UAVs’ clocks synchronized (a
reasonable assumption in the context of this class
of applications). Let xi = [xi1,x

i
2,μ

i]> denote the
coordinates in the (xi1,x

i
2) plane and orientation μi of

the ith task. Let d(xjv(t),x
i) be the distance that UAV j

must travel from its current location and orientation
xjv(t) = [x

j
v1
(t),xjv2 (t),μ

j
v(t)]

> to process task i at xi.
Here, as in a number of UAV studies [8, 9, 22] we
use a Dubin’s car [28] as a model for UAVs flying
at constant altitude and at a constant velocity v,
where

_xjv1 (t) = v cosμ
j
v(t)

_xjv2 (t) = v sinμ
j
v(t)

_μjv(t) = !maxu
j
v(t)

(1)

where !max > 0 is the maximum angular velocity,
and the steering input ujv(t) is subject to the following
constraint for all t¸ 0,

jujv(t)j · 1, j _μjv(t)j · !max: (2)

Collisions between UAVs are ignored in this work
since it is not the primary goal of this study. We use
this model only to be concrete and to enable us to
perform numerical simulation studies. In fact, all
results in this paper hold for any vehicle such that
if its current state is known, then an upper bound
on how long it takes to reach another given state
can be computed (and due to the current high level
of understanding of aircraft dynamics this includes
virtually any current aircraft).
If communication delays are finite and tasks are

in a finite region, then we can find a d̄ ¸ d(xjv(t),xi)
for all i,j and t¸ 0. Given a certain scenario that
contains a fixed number of tasks located in a finite
region, we could determine d̄ by choosing the longest

564 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 2 APRIL 2008

Fig. 1. Illustration of timing of UAV decision making and size
of prioritized time since last processing.

travel distance that any UAV must travel to any
task considering their respective orientation angles.
Suppose that all UAVs move either on a constant
minimum turn radius or on a straight line for the
Dubin’s car (i.e., the optimal trajectories as explained
in [29]). Let ¿ij , 0< ¿ · ¿ij · ¿̄ , i 2 P, j 2Q, denote
the processing time UAV j takes to process task i
with ¿ (¿̄) being the minimum (maximum) time any
UAV takes to process task i after it first arrives at
it (here “processing” could include multiple passes
over an object at different angles in order to detect
or identify/classify it). Let ±i,j , 0· ±i,j · ±̄ be the
random but bounded time delay that represents
the amount of time any UAV takes to switch from
processing task i to task j, j 6= i (e.g., to set up UAV’s
sensors or munitions). Let ±c > 0 be the random
but bounded time delay incurred when UAV j has
finished processing any task but it needs to wait for
information held by another UAV in order to make a
decision (see below for more details). Assume that ±c
is bounded by ±̄c > 0.
To clarify, consider the case where there are only

three tasks (N = 3), named “task 1,” “task 2,” and
“task 3” and two UAVs (M = 2). Suppose that at
some time t0, the value of prioritized time since last
processing task 1 is T1(t

0)> 0 as shown in Fig. 1 and
the last task processed by UAV 1 is task 2. At time
t0+ ±2,1 UAV 1 is heading to task 1. Then, at time
t0+ ±2,1 + d(x

1
v ,x

1)=v UAV 1 is at the location where
task 1 is and it initiates the processing of task 1, and
the amount of time that it takes to do so is dictated
by the ¿1 parameter. When processing for task 1 is
completed, the UAV sends a request to UAV 2 to
coordinate decision making and thereby incurs the
delay ±c. Finally, at time t

0+ ±2,1 + [d(x
1
v ,x

1)=v] +
¿1 + ±c UAV 1 chooses the next task to perform.
Moreover, we assume that T1(t) in Fig. 1 could have
any shape for the time when UAV 1 is processing task
1 to represent how UAV 1 processes this task. Fig. 1
shows that Ti(t) = f(t) for

t0+ ±i,1 +
d(x1v ,x

1)
v

· t · t0+ ±i,1 +
d(x1v ,x

1)
v

+ ¿1

and we assume that function f(¢) must additionally
satisfy f(t)· f̀ (t), where f̀ (t) is the bold line shown
in Fig. 1. Notice that the processing time ¿1 does not
depend on the value of T1(t

0+ ±2,1 + d(x
1
v ,x

1)=v) since
no matter what the current value of the prioritized
time since last processing is, the UAV will always take
¿1 time units to process task 1. One consequence of
this is that the slope of f̀ (t) will not be the same each
time a UAV is processing a task.

B. Asynchronous Group Decision Making

We define the set U(t)½ P as the “unattended”
tasks not processed or being pursued by any UAV
at the current time t, while the set Uaj (t) = fi¤j (t)g[
U(t) is the set of tasks that can be considered for
processing by UAV j, j 2Q. Here, i¤j (t) is the task
being processed or pursued by UAV j at time t.
Define A(t) as the set of tasks processed or pursued
by the group of M UAVs at the current time t; hence
P =U(t)[A(t), t¸ 0. Let

S(t) = ffTi(t) : i 2U(t)g, tsg
denote the information set available for UAV j at time
t when it makes a scheduling decision, where ts is a
“time stamp” that indicates the last time that the Ti(t),
i 2U(t) were updated.
Next, we explain how asynchronous decision

making across the group of UAVs is accomplished.
Define a UAV ju 2Q that holds the set of information
for scheduling decisions S(t). We assume that
whenever a UAV ` 2Q where ` 6= ju (if `= ju there
is no need for a request) finishes processing a task at
time tf such that Ti¤

`
(tf) = 0 (i.e., the instant the task

has been processed), it broadcasts a request for the set
S(t) to all the UAVs. Let the amount of time it takes to
broadcast the request and receive S(t) be ±c > 0 which
again is random, but bounded by a constant ±̄c > 0.
In the time interval [tf , tf + ±c] that UAV ` waits for
S(t), Ti¤

`
(t0) = 0, t0 2 [tf , tf + ±c], which means that UAV

` keeps processing task i¤` until it receives S(t). This is
consistent with our definition of the prioritized time
since last processing since task i¤` has already been
completely processed at time tf and it is not being
ignored during the interval [tf , tf + ±c] anymore. The
instant that UAV ` gets S(t) (and the “request queue”
defined below), it becomes UAV ju, it compares the ts
value to its local clock, and it proceeds to update all
Ti(t), i 2U(t), values if there exists any mismatch (the
time stamp ts indicates to UAV ` when was the last
time that UAV ju updated all Ti(t), i 2U(t)). By doing
so, UAV ` makes a decision on what task to process
next with up-to-date information (note that even if the
UAV’s local clocks are not synchronized, the decision
maker will be able to select a new task to process).
Since two or more UAVs could request the set S(t)

at the same time, we need to use a mutual exclusion

GIL ET AL.: COOPERATIVE TASK SCHEDULING FOR NETWORKED UNINHABITED AIR VEHICLES 565

algorithm which coordinates the access of all UAVs
to the set S(t) in such a way that this set can be
accessed and updated by only one UAV at a time.
Assume UAV ju has a request queue. There are
certain ways of creating that queue, one possibility
being the first-in first-out (FIFO) policy, and another
is to simply use a predefined order (e.g., requests
made from UAV 1 up to UAV M). Thus, if UAV
ju has already built a queue and updated the set
S(t), it proceeds to send S(t) and the request queue
to the UAV located in the head of the queue when
it transmits it. The UAV that receives S(t), and the
request queue updates the set S(t), and passes this set
along with the queue to the new UAV at the head of
the queue, and this process is repeated.
Note that we have described the case where the

set S(t), and the request queue, are passed along
the network and they are held by the UAV that
requested this information; it is clear for this case
that a “tracking” mechanism may be needed to know
the current UAV that holds this information (e.g., a
sparsely connected communication topology), unless
broadcast type requests are made as we assume here.
However, another scenario can be studied as well,
where UAV ju always holds the set S(t), and the
request queue, and whenever a UAV ` 2Q, ` 6= ju,
requests the set S(t) held by UAV ju, it modifies it
with the new unattended tasks and time stamp, and
sends it back to UAV ju. Regardless of the strategy
used to share S(t), here the key point will be that it is
shared over an asynchronous network where random
but bounded delays can be incurred as we discuss
next.
Let kj , kj 2 f0,1,2, : : :g, denote the index of

the sequence of times that UAV j 2Q makes task
scheduling decisions. Let Dkj be the time when UAV
j 2Q, decides to process task i¤j (kj), and assume that
at the initial time Dkj = 0 for k

j = 0. Let Dkj+1 be
the next decision time for UAV j, which is when it
completes the processing of task i¤j (k

j) and gets S(t)
from UAV ju. For each j define Dkjc to be the closest
decision time made by any other UAV jc, previous
to the decision time Dkj+1 (so given j we can define
jc at each Dkj+1). Moreover, having introduced this
notation, it can be noted that UAV jc is always going
to be equal to UAV ju (the queue holder), which
means that UAV j will receive the request queue from
UAV jc at time Dkj+1. Note that if no other UAV
except j makes a decision between times Dkj and
Dkj+1, then Dkjc is just equal to Dkj so j

c = j. Since
±i,j ¸ 0 and ±c > 0 we know that Dkj+1 >Dkjc . By
the definition of jc, Dkj ·Dkjc < Dkj+1, and we
know that

Dkj+1¡Dkjc < Dkjc+1¡Dkjc

· ±̄+ d(x
jc

v (Dkjc),x
i¤
jc
(kj

c
))

v
+ ¿̄ + ±̄c: (3)

Fig. 2. Example decision times for M = 2 UAVs.

This can be seen in Fig. 2. Note that in the time
interval t 2 [Dkjc ,Dkj+1] the set U(t) is constant. This
will be useful in our proof below.

IV. STABLE COOPERATIVE SCHEDULING

Tasks are spread in a limited region and each
UAV can process just one task at a time. There are
M resources that must be shared (UAVs capabilities),
and the scheduling strategy must decide how they
are shared (what task to process). Note that if no
UAV was actively engaged in processing, then clearly
Ti(t)!1, i 2 P, t!1 since no tasks are processed.
We consider the system to be “unstable” if Ti(t)!1,
t!1 for any i 2 P. Hence, the goal of the scheduling
allocation strategy is to try to avoid Ti(t)!1 for any
i 2 P and indeed it will try to keep the Ti(t) values as
small as possible since this represents that the set of
UAVs has recently processed each task. We consider a
scenario to be “stable” when there exists a B > 0 such
that Ti(t)< B, i 2 P and t¸ 0 (we are then thinking of
stability as in [30] as Lagrange stability or uniform
ultimate boundedness).
First, we show that scheduling strategies that

choose every task i 2 P within finite time interval
result in stable systems. Studying this case will
help motivate our choice of cooperative scheduling
methods. For simplicity, we study the case where
there is just one UAV (M = 1) processing task. Let
Si denote the time elapsed between two consecutive
decisions for the same task i 2 P; this is simply how
long it will take for the one UAV to choose the same
task i 2 P again (there could be other decisions for
tasks j 6= i in between). Let Wi denote the time elapsed
between the two contiguous completions of task i (i.e.,
the time difference between two consecutive Ti(t

1) =
0 and Ti(t

2) = 0, t2 > t1). Now, if the tasks in the
environment are always processed in a preestablished
order, then we can easily derive an expression for Si
as

Si =
NX
i=1

μ
±j,i+

d(x1v (t),x
i)

v
+ ¿i

¶
·N

Ã
±̄+

d̄

v
+ ¿̄

!
,

i 2 P, t¸ 0:
Moreover, any scheduling strategy that commands one
UAV to persistently process all tasks will result in a

566 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 2 APRIL 2008

stable system. Hence, there exists a B > 0 such that
Ti(t)· B for all i 2 P and t¸ 0. In Fig. 1 we can see
that the maximum value of Ti occurs at the peak of the
plot, which is the time when the UAV reaches for the
first time the location where the task is. According to
the definition of Ti(t), we can obtain then the ignored
time for this peak, tpeaki (t), as

tpeaki (t) =
Ti(t)
pi

· B
p

(4)

where p=minifpig.
Moreover, the ignored time for any task i is

ti(t)·
B

p
: (5)

Now, we can use (5) to obtain that Wi(t)· B=p+ ¿i ·
B=p+ ¿̄ , and since in this case there are always two
consecutive decisions for any task i among three
contiguous completions of processing of the same
task, i.e., Si(t)< 2Wi(t), so

Si(t)< 2

Ã
B

p
+ ¿̄

!
, i 2 P:

Since we have shown that any scheduling strategy that
satisfies the conditions defined above will stabilize
the scenario considered here, we could use the
ones introduced in [30, 1] for the M = 1 case in
this framework; however, while these policies will
consider the sizes of the Ti values (they will avoid
ignoring high priority tasks), they will likely lead to
wasting UAV fuel since they completely ignore travel
times due to varying spatial distances.
This is why we are motivated to introduce a

cooperative scheduling strategy that seeks to pay
attention to two variables: high priority tasks and
travel time (fuel expenditure). Moreover, the above
methods in [30] only provide stability for the M = 1
case where here we need to consider the M > 1 case
with asynchronous decision making and bounded
communication delays where simple bounding
arguments on times between completions of tasks
are not possible. Furthermore, we are interested
in deriving bounds for the ignored time since last
processing in terms of known parameters, not just
parameters values that are just known to exist (e.g.,
B above).

A. Cooperative Scheduling Strategies

Next, we introduce a particular cooperative
scheduling strategy that we study in the remainder
of the paper. Other strategies that can be applied to
this particular problem can be found in [1] which
are extensions of those in [30]. For this particular
case, at time kj the cooperative scheduling strategy

on each UAV j chooses to process task i¤j (k
j), such

that ij 2Uaj (Dkj)

Ti¤
j
(kj)(Dkj)¡

d(xjv(Dkj),x
i¤
j
(kj))

v

¸ 1
N ¡M +1

X
ij2Uaj (Dkj)

"
Tij (Dkj)¡

d(xjv(Dkj),x
ij (kj))

v

#

(6)

and makes no other decision until it has finished
processing task i¤j (k

j) and received S(t). Note that
the quantities of both sides of (6) can be positive
or negative and if they are both zero then any task
can be chosen for processing. Ties are broken with
an arbitrary choice. Note that when UAV j finishes
processing task i¤j (k

j ¡ 1), it chooses a new task
i¤j (k

j) from the set Uaj (Dkj), and then replaces it with
i¤j (k

j ¡ 1) to form U(Dkj). Generally for j 6= j 0,
Dkj 6=Dkj0 , and Uaj (Dkj) 6=Uaj0 (Dkj0) so (6) represents
how decisions are made over a range of M times.
Since there can be many more decisions made by one
UAV than another it could be that Dkj ¡Dkj0 !1 as
kj !1 and kj

0 !1, j 6= j0. Note that although the
UAVs could complete processing of their respective
tasks at the same time, their decisions will occur at
different times since the UAVs will make choices
depending on the queue held by UAV ju so that they
will pick different tasks to process due to the use of
the mutual exclusion algorithm.
Equation (6) produces a set of admissible choices

for what UAV j can process. In particular, the strategy
“process M closest highest priority tasks” chooses to
process task i¤j (k

j) where

i¤j (k
j) = argmax

ij

(
Tij (Dkj)¡

d(xjv(Dkj),x
ij (kj))

v

)
,

ij 2Uaj (Dkj) (7)

is a special case of (6) in the sense that it represents
one possible choice for (6); hence when in the
Appendix we do stability analysis for (6) it
also applies if we use (7) for our strategy. It
has been shown in an experimental testbed for
networked cooperative scheduling strategies, an
“electromechanical arcade,” that a better performance
is obtained by the strategy shown in (7) compared
with scheduling strategies that seek to optimize just
one objective (e.g., sizes of the Ti values) [31]. In
the electromechanical arcade the authors consider
both an “environment” that is highly uncertain (e.g.,
due to uncertain pop-up target appearance times)
and imperfect communications that make it difficult
for the decision makers to coordinate their actions.
This experiment can be viewed as a 1-D version
of the model introduced in Section IIIA since the
“guns” (UAVs) need to process the targets (tasks) in
a cooperative manner.

GIL ET AL.: COOPERATIVE TASK SCHEDULING FOR NETWORKED UNINHABITED AIR VEHICLES 567

Notice that the left-hand side of (6) could be
viewed as a cost function and the goal of the strategy
is to locally optimize the difference between the
prioritized time since last processing and the travel
time from current UAV location to the chosen task
location. Another way to view this cost function is by
thinking of the chosen task i¤j (k

j) by UAV j as the one
whose prioritized “ignore time” combined with the
UAVs travel time is greater or equal to the average
value of those variables for each task contained in
the set Uaj (Dkj). Thus, if all the tasks contained in
the set Uaj (t) have the same prioritized time since last
processing but they are located at different distances
from a UAV, then this UAV chooses to process the
task that is closest to it. In this sense, the strategy is
“myopic” (but consider the discussion in Section I on
why “look-ahead” can be detrimental for the type of
cooperative control problem we consider).
In some cases the pi values are set a priori by

constraints of the problem. In other cases it is possible
to view them as controller design parameters that can
be tuned to improve performance. Recall that the pi
parameters are embedded in the Ti variables, so by
changing these parameters any UAV can put more or
less emphasis in the time since last processing. That
is, if the pi values are all too small, then the UAVs
will tend to choose the closest tasks at any decision
time, whereas if all pi values are too big, then the
UAVs will tend to choose tasks to process based on
the ignored time, neglecting the travel distance to the
tasks.

V. MAIN THEORETICAL RESULT

In this section we present our main theoretical
result, which focuses on the stability (boundedness)
of the ti variables when the strategy defined in (6) is
used. The proof of this theorem can be found in the
Appendix.

THEOREM Assume that N >M. For the cooperative
scheduling strategy in (6) a specific bound on the
ultimate longest time that any UAV will ignore task
i 2 P is given by

lim
t!1 ti(t)·maxfB

1,B2g
where

B1 =
(±̄+ ¿̄ + ±̄c)

p

Ã
NX
i=1

pi
M
¡p
!
(NM ¡M2 +M +1)

+
d̄

pv

Ã
M(N ¡M +1)+ p̄+

NX
i=1

pi
M
¡p
!
+
±̄

p
p̄

B2 =

³
±̄+ ¿̄ + ±̄c+ d̄=v

´
p

Ã
NX
i=1

pi
M
¡p
!
(NM ¡M2 +M +1)

+
p̄

p

μ
±̄+

d̄

v

¶

where p=minifpig, p̄=maxifpig, and d̄ =
maxfd(xjv,xi)g.
Next, we make a few remarks about the ultimate

bound obtained and how to study other scenarios not
considered in this paper.

REMARK 1 Note that when the bounds on the time
delays ±̄ and ±̄c increase, the bound also increases
(e.g., network delays can result in ignoring tasks
longer). The ultimate bound decreases if the velocity
of the UAVs increases since the UAVs can move
faster to process tasks. If the priority values assigned
to tasks increase, then the ultimate bound does also
since then we may spend more time processing the
higher priority tasks and hence an increased amount
of time ignoring the lower priority tasks. If all tasks
are spread out more (i.e., d̄ increases), then the
ultimate bound increases since it takes longer to travel
to process tasks, and this provides a clear idea how
“task spatial density” could affect the ultimate bound.
The ultimate bound increases if the processing time
of every task is increased since the UAVs are busier
processing and hence ignore other tasks longer. If the
number of tasks and UAVs are about the same, then
the ultimate bound decreases.

REMARK 2 Uncertainties in the location of tasks and
pop-up tasks can be added to the model introduced
in Section III. For instance, let ±(t)> 0 denote the
delays from the switch to processing a different task,
the inter-task travel time, the additional time spent on
finding the real task location, and the waiting time for
pop-up task appearances. The delay that represents
the time any UAV takes to switch from processing
task i to task j, j 6= i is defined here as ±i,j · ±̄, and the
inter-task travel time is defined as d(xjv(t),x

i)=v · d̄=v.
Now, suppose that the additional time spent by any
UAV on finding task i is bounded and denoted by
±is(t)· ±̄s. Moreover, suppose that for task type i
there is some bound ±ip on the amount of time that
it would take for any UAV to first realize that the
task i may appear, if that was the only task that the
UAV is waiting to process (clearly this would depend
on the task appearance period). Suppose that ±i,je (t)
denotes the delay incurred by UAV j in first getting
an indication of the presence of task i, from the time
that it arrives to the correct position where the task is.
Recall that this value is going to be determined by the
time period of appearance of each task i. Note that if
we let

±̄p =max
i
f±ipg

then ±i,je (t)· ±̄p. Let

±(t)· ±̄+ d̄
v
+ ±̄s+ ±̄p = ±:

For convenience, we let ± denote a constant that is
the least upper bound on ±(t) (i.e., we simply remove
the time index to denote the least upper bound on the

568 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 2 APRIL 2008

Fig. 3. Time since last processing (seconds) of every task and unattended set when pi = 50, i 2 f1,2, : : : ,6g.

variable). This value ± will replace then the terms
±i,j and d(x

j
v(t),x

i)=v in appropriate places where
they appear, even in the ultimate bound of the main
result. Note that these new variables (i.e., ±i,je (t) and
±is(t)) included in the model could now lead us to the
introduction of new strategies that account for the
time delays caused by the appearance of the pop-up
tasks or the additional time spent by any UAV in
order to find the task’s real location. Hence, the UAVs
could then seek to achieve a desire to balance several
objectives: high priority processing tasks, minimal
inter-task travel times, minimal search time, and
minimal waiting appearance time for pop-up tasks.
One important point to highlight here is the fact

that the analysis can take into account the behavior
of heterogeneous UAVs (i.e., UAVs with different
processing capabilities for the same task) via different
¿i. It also inherently takes into account trade-offs
between task priorities, network delays, and spatial
separation between tasks, something that has not
been analytically characterized in past studies of
cooperative control.

VI. SIMULATIONS

Here we show in simulation how the cooperative
scheduler will ignore lower priority tasks longer
and how the ignored time for tasks is affected
by communication delays. Also, we introduce a
noncooperative controller and derive design guidelines
for both noncooperative and cooperative scheduling
systems.

A. Influences of Priorities and Communication Delays

We run two simulations with the following values:
the sampling time is Ts = 0:1 s, the length of the

simulation is 1000 s, there are N = 6 tasks, M = 4
UAVs, the switching times for UAVs 1 and 2 are
±1i,j = ±

2
i,j = ±

3
i,j = ±

4
i,j = 0 s, and we consider a fixed

communication delay of ±c = 60 s (i.e., a delay in the
middle of the range of possible values that could arise
in the type of problem we consider as discussed in
Section II).
The first simulation considers pi = 50, i 2 P. Fig. 3

shows in the top 6 plots the time since last processing
of any UAV for all tasks, and the unattended tasks in
the bottom plot.
Next, we let p1 = 10 and do not change the rest

of the values and get the result in Fig. 4. Notice that
since the priority of task 1 has been decreased this
task is ignored more than in the first simulation. This
shows that UAVs can be forced to ignored tasks by
assigning low priority values to tasks. Furthermore, it
can be seen that there are intervals where the waiting
time for the information set S(t) is greater than ±c =
60 s due to the amount of previous requests that have
been made by other UAVs.
Now, we let all the priorities have the same

values (pi = 50, i 2 P) and we study two cases: no
communication delays, ±c = 0, as shown in Fig. 5 and
random but bounded delays, ±c · 180 s, as shown
in Fig. 6. It is seen from the figures that the delay
decreases the rate at which tasks are processed and
also increases the ignored time of each task.

B. Comparative Analysis: Noncooperative Versus
Cooperative Strategies

Here, we also consider a group of M UAVs not
connected over a communication network. Due
to the lack of communication and hence lack of

GIL ET AL.: COOPERATIVE TASK SCHEDULING FOR NETWORKED UNINHABITED AIR VEHICLES 569

Fig. 4. Time since last processing (seconds) of every task and the unattended set when p1 = 10, pi = 50, i 2 f2, : : : ,6g.

Fig. 5. Time since last processing (seconds) of every task and unattended set without communication delays.

coordinated decision making we call such a strategy
“noncooperative.” Each UAV has its own Tij (t), i 2 P,
j 2Q and the prioritized time since last processing for
each task is given by Ti(t) = minjfTij (t)g, j 2Q. Notice
that from the task point of view, this represents how
long a task has been ignored by any UAV. For this
case, UAVs make scheduling decisions based on (6)
but considering all tasks at each decision time, hence
there could be cases where one or more UAVs are
processing the same task during a certain time
interval which is generally a waste of processing
resources.
We seek to determine if cooperative strategies are

always superior to noncooperative ones. We would

like to obtain conditions under which it is best not to
cooperate. We run a Monte Carlo simulation with the
following values: the sampling time Ts = 0:1 s, fixed
delays

±c 2 f1,10,50,100,150,200,300,400g s
a set of densities with standard deviation

¾ 2 f500,1000,2500,4000,5000g m
(we use a 2D Gaussian distribution for tasks
in the middle of the region with mean (x̄, ȳ) =
[5000,5000] m), no switching delays, and the
simulation length of 2500 s. Each delay-density
case consists of 100 simulations. The number of

570 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 2 APRIL 2008

Fig. 6. Time since last processing (seconds) of every task and unattended set for random but bounded communication delays.

Fig. 7. Performance measures of Monte Carlo simulation (white surface is for noncooperative case and shaded surface is for
cooperative case).

simulations for each delay-density combination was
chosen to be 100 because the standard deviation of
the performance measures (introduced below) did not
change significantly and settled to a relatively small
constant value beyond 100 simulations (less than 6.67
in all cases).
To establish a fair comparison between the

performance of noncooperative and cooperative
strategies, we need to introduce a way to evaluate the
performance of the UAVs. We compute the average
of the ignored time since any task has been processed
(1=N)

PN
i=1 ti(k) at each step k. We also compute the

time average of this quantity (i.e., the time average
of the average values, “average-of-average”) and

the maximum average value, “max-of-average,”
achieved over the entire simulation run. We compute
the maximum time that any task has been ignored at
each time step k, maxifti(k)g. We also compute the
time average of this quantity (i.e., the time average
of the maximum values, “average-of-max”) and the
maximum of the maximum values, “max-of-max,”
achieved over the entire simulation run.
Fig. 7 shows that different performance measures

give different bounds on the delay for which the
cooperative case degrades to the performance of
the noncooperative case. For all the cases, the
performance measure increases very slowly for
lower values of delays (less or equal to 1 min), when

GIL ET AL.: COOPERATIVE TASK SCHEDULING FOR NETWORKED UNINHABITED AIR VEHICLES 571

compared with the higher values of delays, where
there is a steady increase in the performance measure.
The effect of decreasing density only results in a
relatively small increase in the different performance
measures (of course densities vary over a larger
range and their impact will be more significant); this
increase is due to the targets being spread further
apart. As expected, the average-of-average and
max-of-average result in a higher value of the delay
“cross-point,” where the cooperative case degrades
to the noncooperative case, than the max-of-max
and average-of-max since the former considers
performance over average values while the latter
considers performance over maximum values (e.g.,
the max-of-max quantifies worst-case performance).
Notice that there are flat regions or valleys for small
delay values for some of the performance measures.
This arises due to the fact that small delays can
result in multiple UAVs waiting for the S(t) set at
the same time and while doing this they all hold their
corresponding Ti(t) values at zero. In our case with
4 UAVs and 6 targets this leads to a performance
improvement up to a certain magnitude of delay.
If, however, there are many more tasks than UAVs,
then generally it will be the case that increasing the
delay will always lead to performance degradation.
In summary, communication delays have a prominent
influence in the degradation of the cooperative case
to the noncooperative one. The above analysis could
provide design guidelines for deciding when it is
beneficial to cooperate and when it is not.

VII. ROLE IN GENERAL COOPERATIVE CONTROL
PROBLEMS

In this section we explain the role of the
cooperative control problem that we consider here in
more general scenarios. In some cases we explain how
our analysis can be extended for these more general
problems, and in others we highlight additional
modifications of the cooperative strategies that can be
used to counteract the myopic nature of the strategies.

A. Maximizing UAV’s Task Completion Rate

Fig. 8 depicts an opportunity to generalize the
problem setting considered here by allowing the
number of tasks to be time varying due to task
arrivals and departures and due to UAVs assigning
different priorities for the processing of tasks during
the mission. Here, the group of UAVs can receive
tasks to process from several sources: home base
(e.g., humans demanding the processing of specific
tasks), global sensors (e.g., satellites or high-flying
platforms), and the UAV’s on-board sensors. Some
tasks are processed by UAVs and “depart” the system,
while others that are processed generate more tasks

Fig. 8. Multiple tasks processed by M UAVs.

(e.g., when a search task is performed and a target is
found, a classification task is generated).
The scenario considered here represents some

progress towards solving this general problem. To
see this, consider the case where the UAVs in Fig. 8
need to perform search, classify, attack, and verify
operations for each task [8]. Suppose that each task in
the buffer has a prioritized time Ti associated with it
and that these are used to make scheduling decisions
just like we do earlier. Suppose, however, that we
allow the UAVs to manipulate the priority values
associated with each such task during the mission.
Initially, one UAV could have assigned a high priority
value to a certain task that is considered of extreme
importance for the mission; however, when this or
another UAV performs classification, it may realize
that the task is not what it was initially thought to
be (e.g., not a valid target). A UAV then can assign a
new priority value to tasks associated with that target.
Define new variables in the model used here as the
priority of searching psi (t), the priority of classifying
pci (t), the priority of attacking p

a
i (t), and the priority

of verifying pvi (t), for any task i 2 P. If the number
of tasks is fixed (i.e., there are no new task arrivals
and departures to the buffer), the analysis performed
in the Appendix still holds so long as the pi(t) values
are bounded by a known constant. Moreover, even if
the number of tasks N(t) in the buffer changes over
time, if we know that N(t)· N̄ <1 for a known N̄,
then we could use the same bound obtained in our
main result by replacing N with N̄ in this case. The
problem is, however, that our framework is not easily
extendable to the case where arbitrary task arrivals
and departures can occur so we cannot quantify UAV
system throughput (maximum task completion rate) in
this general case.

B. Heuristic Modifications of Cooperative Scheduling
Strategies

Next, some ideas for counteracting the effect of the
myopic nature of the cooperative scheduling strategies
defined in Section IVA are provided.
1) Individual Decision Making by UAVs: We can

introduce the weights w · wji (t) = minj0 6=jfd(xj
0
v (t),x

i)g=

572 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 2 APRIL 2008

d(xjv(t),x
i)· w̄, j 6= j 0, for all j, j0 2Q, i 2 P and

redefine the cooperative scheduling strategies as

wj
¤
i¤
j
(Dkj)

Ã
Ti¤
j
(kj)(Dkj)¡

d(xjv(Dkj),x
i¤
j
(kj))

v

!

¸
P

ij2Uaj (Dkj)

h
wjij (Dkj)

³
Tij (Dkj)¡ d(xjv(Dkj),xij (k

j))=v
´i

N ¡M +1

and choose the same Lyapunov-like function to derive
a different upper bound (i.e., this will include the
parameters w and w̄) on the ultimate longest time
that any UAV will ignore task i 2 P. The effect of
these weights would be to attenuate the value from
the expression

Tij (kj)(Dkj)¡
d(xjv(Dkj),x

ij (kj))
v

if some UAV j0 is considerably closer to task
i than UAV j at time t (i.e., wji (t)¿ 1 since
minj0 6=jfd(xj

0
v (t),x

i)g¿ d(xjv(t),x
i)), then once UAV j

is done with the processing of its current task, task
i may not be a potential candidate to be chosen by
UAV j, provided that there are other tasks very close
to the current location of UAV j. The global effect of
these weights could lead the UAVs to choose tasks
with high priorities and minimal travel times located
in the vicinity of the current location of the UAVs.
Another way to interpret this effect is by noticing that
UAV j is not interested in processing task i next since
there is another UAV j0 that is closer to this task and
it might be processing task i in the near future.
2) Passing the Request Queue Between UAVs:

The reason why UAVs are forced in Section IIIB
to keep visiting the same task in the time interval
[tf , tf + ±c] while it waits for the set S(t) is because
1) the number of tasks is fixed, and 2) we are
studying surveillance-type problems in our framework.
Note that we could overcome this “limitation” for a
search, classify, attack, and verify scenario when the
number of tasks are time varying as it is explained in
Section VIIA. Thus, once a UAV finishes processing
a task, it could broadcast a request for the set S(t), but
this time, this UAV could search for new tasks in the
environment in the time interval [tf , tf + ±c].
3) Random Delays and Waiting time for Appearance

of Pop-Up Tasks: We could borrow ideas developed
for flexible manufacturing systems to avoid long
UAVs’ waiting time to execute a particular task,
which might result in poor mission performance.
For instance, universally stabilizing supervisory
mechanisms [32] can be utilized to decide for how
long a UAV should wait for either the reception of the
set S(t) or for the appearance of a task.
4) Preemptive Strategies: A UAV could broadcast

the set S(t) to the rest of UAVs at any decision time,
and at the time of reception the rest of UAVs could

possibly switch tasks. In this way, revision of previous
UAV decisions can be reconsidered as soon as new
information received from other UAVs becomes
available.

VIII. CONCLUDING REMARKS

We have derived stability (boundedness)
conditions for network-based cooperative scheduling
strategies that seek to optimize a cost function at
each decision time when all UAVs know a priori
detailed information about all tasks in a limited area.
We have also shown in Monte Carlo simulations
design guidelines for cooperative and noncooperative
strategies based on task density and poor performance
in the communication channels. For future work,
we are most interested in addressing the problem
of how to derive stability properties for maximizing
UAVs’ throughput when the number of tasks is time
varying and when UAVs search, classify, attack,
and verify tasks in a limited area as discussed in
Section VII. In addition to this and the general idea
of using FMS scheduling methods for UAV groups,
there are a number of specific research directions
that could be studied. For instance, in Section IVA
we mentioned how it is possible to view the pi values
as controller design parameters that can be tuned to
improve performance. Since (6) seeks to optimize
two objectives, putting more emphasis in one variable
may result in degradation of the performance metrics;
hence, it would be useful to study optimization
methods (off-line or on-line ones) that tune the pi
in order to achieve a better performance during
the mission. Next, it might be worthwhile to study
the possibility of obtaining tighter bounds on the
ignored time of tasks when both scheduling strategies,
cooperative and noncooperative, are combined.
We have already seen in Section VI under which
conditions it is beneficial for the UAVs to cooperate
and when not to do it. The goal would be to define
a switching strategy that commands the UAVs either
to cooperate or not to cooperate based on measured
delays in order to minimize the mission time.

APPENDIX. PROOF

In this appendix we provide the proof of the
theorem stated in Section V. Let

V(t) =
NX
i=1

Ti(t):

The proof to follow focuses on the strategy where
the task i¤j is chosen by UAV j 2Q. This proof
proceeds by extending the one in [1]. There are,
however, fundamental differences since the scheduling
strategy is quite different (it represents a desire to
achieve more than one objective and the values of the

GIL ET AL.: COOPERATIVE TASK SCHEDULING FOR NETWORKED UNINHABITED AIR VEHICLES 573

strategy can be positive or negative), and the slope
of Ti(t) could be different every time that any UAV is
processing a task as pointed out in Section III whereas
for the problem in [1] that slope is always constant.
One implication of this last point will be that we do
not need a “capacity condition” as we do in [1].

First, note that

V(t) =
MX
j=1

0@Ti¤
j
(t) +

X
i2U(t)

Ti(t)
M

1A : (8)

Define the function Vj(t) for UAV j as

Vj(t) = Ti¤
j
(t) +

X
i2U(t)

Ti(t)
M
: (9)

Consider the values at the set of decision times
Dkj ,

MX
j=1

Vj(Dkj) =
MX
j=1

24Ti¤
j
(kj)(Dkj)+

X
i2U(D

kj
)

Ti(Dkj)
M

35 :
(10)

Since Ti¤
j
(kj)(Dkj+1) = 0, j 2Q (where i¤j (kj) was the

task that was just processed by UAV j 2Q),
MX
j=1

Vj(Dkj+1) =
MX
j=1

24 X
i2U(D

kj+1)

Ti(Dkj+1)
M

35 : (11)

Note that by definition U(Dkj+1) =U(Dkjc) since
the unattended set will not change for every UAV j
for t such that Dkjc · t·Dkj+1. Hence, considering
how long the tasks have been ignored during this time
period,

MX
j=1

Vj(Dkj+1)

=
MX
j=1

8<: X
i2U(D

kj
c)

·
Ti(Dkjc)
M

+
pi
M
(Dkj+1¡Dkjc)

¸9=; :
(12)

From (9) for any UAV jc at time DkjcX
i2U(D

kj
c)

Ti(Dkjc)
M

= Vjc(Dkjc)¡Ti¤
jc
(kjc)(Dkjc): (13)

We use (3), (12), and (13) to obtain

MX
j=1

Vj(Dkj+1)·
MX
j=1

(
Vjc(Dkjc)¡Ti¤

jc
(kjc)(Dkjc) +

X
i2U(D

kj
c)

pi
M

Ã
±̄+

d(xj
c

v (Dkjc),x
i¤
jc
(kj

c
))

v
+ ¿̄ + ±̄c

!)

=
MX
j=1

(
Vjc(Dkjc)¡

0@Ti¤
jc
(kjc)(Dkjc)¡

d(xj
c

v (Dkjc),x
i¤
jc
(kj

c
))

v

X
i2U(D

kj
c)

pi
M

1A+(±̄+ ¿̄ + ±̄c) X
i2U(D

kj
c)

pi
M

)
:

(14)

Focus now on the first
P

i2U(D
kj
c)pi=M term in

(14) and notice that the proof can be divided in two
cases as follows: a) When

P
i2U(D

kj
c)pi ·M,kj

c
, and

b) when
P
i2U(D

kj
c)pi >M,k

jc .
Case a To start, we seek to remove the firstP
i2U(D

kj
c)pi=M term in (14) in order to make the term

in parenthesis the same as our strategy in (6). Note
that
MX
j=1

Vj(Dkj+1)

·
MX
j=1

(
Vjc (Dkjc)¡

Ã
Ti¤
jc
(kjc)(Dkjc)¡

d(xj
c

v (Dkjc),x
i¤
jc
(kj
c
))

v

!

+(±̄+ ¿̄ + ±̄c)
X

i2U(D
kj
c)

pi
M

)
: (15)

We use the definition of the cooperative scheduling
strategy for j = jc in (15)

Ti¤
jc
(kjc)(Dkjc)¡

d(xj
c

v (Dkjc),x
i¤
jc
(kj
c
))

v
¸ 1
N ¡M +1

X
ij2Uaj (Dkjc)

£
"
Tij (Dkjc)¡

d(xj
c

v (Dkjc),x
ij (k

jc))
v

#
:

But notice that

Ti¤
jc
(kjc)(Dkjc)¡

d(xj
c

v (Dkjc),x
i¤
jc
(kj

c
))

v

¸ Vjc(Dkjc)

(N ¡M +1)
¡ 1
N ¡M +1

X
ij2Uaj (Dkjc)

£
"
d(xj

c

v (Dkjc),x
ij (kj

c
))

v

#
:

574 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 2 APRIL 2008

Combine this with (15) to get

MX
j=1

Vj(Dkj+1)·
MX
j=1

(
Vjc(Dkjc)

μ
1¡ 1

N ¡M +1

¶
+

1
N ¡M +1

£
X

ij2Uaj (Dkjc)

"
d(xj

c

v (Dkjc),x
ij (kj

c
))

v

#
+(±̄+ ¿̄ + ±̄c)

X
i2U(D

kj
c)

pi
M

)
: (16)

Also
MX
j=1

Vj(Dkj+1)·
MX
j=1

(
Vjc(Dkjc)

μ
1¡ 1

N ¡M +1

¶
+
d̄

v
+(±̄+ ¿̄ + ±̄c)

Ã
NX
i=1

pi
M
¡p
!)

(17)

sinceX
i2U(D

kj
c)

pi
M
=

NX
i=1

pi
M
¡

X
i2A(D

kj
c)

pi
M
·

NX
i=1

pi
M
¡M p

M
:

(18)

Notice here that we can also obtain a tighter bound on
the right side of (18) by using the M minimum values
of pi rather than Mp.
Define

¯ =
d̄

v
+(±̄+ ¿̄ + ±̄c)

Ã
NX
i=1

pi
M
¡p
!
:

Notice that ¯ > 0 and that

MX
j=1

Vj(Dkj+1)·
MX
j=1

½
Vjc(Dkjc)

μ
1¡ 1

N ¡M +1

¶
+¯

¾
:

But, notice that

MX
j=1

Vj(Dkj+1)·
μ
1¡ 1

N ¡M +1

¶ MX
j=1

fVjc(Dkjc)g+M¯:

(19)

This means that we have a contractive mapping
in (19). Notice, however, that in (19) we have on
the left-hand side Vj(Dkj+1) and on the right Vjc(Dkjc)
so the mapping is contractive as we go from kj

c
to

kj +1, j 2Q. The sums in (19) account for all time so
that the contractive mapping is valid for all t¸ 0. To
explain why, recall how we defined jc: Given a j we
have some Dkj+1 and from that value we define jc as
the index of the UAV that most recently finished its
processing at time t < Dkj+1. So given any Dkj+1 we
can always find a jc (at t= 0 we consider all UAVs to
have just finished processing to get Tij (0) = 0). Any
time t such that Tij (t) becomes zero and after having
received the unattended set it is labeled as Dkj+1.
Then the time range [Dkjc ,Dkj+1] is considered in the
mapping since the left-hand side of (19) is evaluated

at the right side of this interval for one j and the right
side of (19) is evaluated at the left side of the interval.
Now, the key is to note that we can relabel this jc

(and hence Dkjc) as Dkj0+1 since it was the time that
UAV jc finished so it is the new decision time for the
UAV. Then there is of course a j0c, and so forth, so
that all time intervals are considered in the contractive
mapping. Note that this accounts for the fact that the
sums in the contraction are based on a set of times
that are not necessarily contiguous. Note also that in
(19) it is not possible that Vj(Dkj+1) = Vjc(Dkjc) for all
j since ±c > 0 so that Dkjc < Dkj+1 by definition. Also
it is not possible that for all j, Vj(Dkj+1)! Vjc(Dkjc) as
kj !1. While this may happen for some j values,
it cannot happen for all such values. Note that if
for M ¡ 1 UAVs Vj(Dkj+1)! Vjc(Dkjc), then for the
remaining UAV, say j 0, Dkj0c < Dkj0+1, Vj0(Dkj0+1) 6!
Vj0c(Dkj0c).
Define for k ¸ 0

V̄(k) =
MX
j=1

Vjc(Dkjc)

and

V̄(k+1) =
MX
j=1

Vj(Dkj+1)

so that V̄(k+1) is the sum at the set of times when
all UAVs have already finished processing their
respective tasks and have received U(Dkjc) in order
to choose which tasks they will process next. Now, we
use V̄(k) and V̄(k+1) in (19) to get

V̄(k+1)· °V̄(k) + ³ (20)

where 0< ° = (1¡ 1=(N ¡M +1))< 1 and ³ =M¯
which are both constants. Equation (20) is a difference
inequality with a solution that is bounded for all k by

V̄(k)·
μ
V̄(0)¡ ³

1¡ °
¶
°k +

³

1¡ ° : (21)

GIL ET AL.: COOPERATIVE TASK SCHEDULING FOR NETWORKED UNINHABITED AIR VEHICLES 575

Notice that if V̄(0)> ³=(1¡ °) (V̄(0)< ³=(1¡ °)) then
since °k! 0 as k!1, V̄(k) decreases (increases) to
³=(1¡ °) as k!1. Now,

³

1¡ ° =M(N ¡M +1)¯: (22)

This gives us a bound on the transient and ultimate
bound V̄(k) values as k!1, at the decision times.
Next, we need to consider the times in between the
decision times. To do this, note that for all jc, kj

c
,

and k

Vjc(Dkjc)· V̄(k): (23)

Next, consider the case where Vjc(Dkjc + ±i,jc(kjc) +

d(xj
c

v (Dkjc),x
i¤
jc
(kj

c
))=v) occurs at any t, Dkjc < t < Dkj+1.

If this is the case, then for any Ti(t)· f̀ (t) and any
t, Dkjc · t·Dkjc + ±i,jc(kjc) + d(xj

c

v (Dkjc),x
i¤
jc
(kj

c
))=v we

have

Vjc(t)· Vjc
Ã
Dkjc + ±i,jc(kjc) +

d(xj
c

v (Dkjc),x
i¤
jc
(kj

c
))

v

!
:

(24)

On the other hand, for any t, Dkjc + ±i,jc(kjc) +

d(xj
c

v (Dkjc),x
i¤
jc
(kj

c
))=v · t·Dkj+1 if we let ° =

±i,jc(kjc) +d(x
jc

v (Dkjc),x
i¤
jc
(kj

c
))=v we have

Vjc (Dkj+1)

= Ti¤
jc
(kjc)(Dkj+1)+

X
i2U(D

kj+1
)

Ti(Dkj+1)
M

= Ti¤
jc
(kjc)(Dkjc + °)¡

Ti¤
jc
(kjc)(Dkjc + °)(Dkj+1¡Dkjc ¡ °)

¿i¤
jc
(kjc)

+
X

i2U(D
kj
c +°)

Ti(Dkjc + °)
M

+
X

i2U(D
kj
c +°)

pi(Dkj+1¡Dkjc ¡ °)
M

= Vjc (Dkjc + °) + (Dkj+1¡Dkjc ¡ °)| {z }
>0

£

0@ X
i2U(D

kj
c +°)

pi
M
¡
Ti¤
jc
(kjc)(Dkjc + °)

¿i¤
jc
(kjc)

1A : (25)

Here, we have two possibilities as follows.
Case a.1 If the slope of the task currently being

processed is greater or equal to the sum of the slopes
of the unattended tasks over M, i.e.,

Ti¤
jc
(kjc)(Dkjc + °)

¿i¤
jc
(kjc)

¸
X

i2U(D
kj
c+°)

pi
M
,kj

c

then Vjc(Dkj+1)· Vjc(Dkjc + °). Thus, we obtain that
Vjc(t)· Vjc(Dkjc + °) for any t, Dkjc · t·Dkj+1.
For this case then

Vjc (Dkjc + °)

= Ti¤
jc
(kjc)(Dkjc + °) +

X
i2U(D

kj
c +°)

Ti(Dkjc + °)
M

= Ti¤
jc
(kjc)(Dkjc) + ±̄pi¤

jc
(kjc) +

d(xj
c

v (Dkjc),x
i¤
jc
(kj
c
))pi¤

jc
(kjc)

v

+
X

i2U(D
kj
c)

Ti(Dkjc)
M

+
X

i2U(D
kj
c)

pi±̄

M

+
X

i2U(D
kj
c)

d(xj
c

v (Dkjc),x
i¤
jc
(kj
c
))pi

vM

= Vjc (Dkjc) + ±̄

0@pi¤
jc
(kjc) +

X
i2U(D

kj
c)

pi
M

1A

+
d(xj

c

v (Dkjc),x
i¤
jc
(kj
c
))

v

0@pi¤
jc
(kjc) +

X
i2U(D

kj
c)

pi
M

1A
· Vjc (Dkjc) +

μ
±̄+

d̄

v

¶Ã
p̄+

NX
i=1

pi
M
¡p
!

(26)

where both the second and last terms of the right-hand
side of the equation were derived by using (18).
Next, note that for all jc and t¸ 0

Ti¤
jc
(t)+

X
i2U(t)

Ti(t)
M

= Vjc(t)

so that using (24) and (26)

Ti¤
jc
(t) +

X
i2U(t)

Ti(t)
M

· Vjc (Dkjc) +
μ
±̄+

d̄

v

¶Ã
p̄+

NX
i=1

pi
M
¡p
!
:

Hence, using (22)

lim
t!1

ti¤
jc
(t)· lim

t!1

"
ti¤
jc
(t) +

X
i2U(t)

ti(t)
M

#

· M

p
(N ¡M +1)¯+

μ
±̄

p
+
d̄

pv

¶Ã
p̄+

NX
i=1

pi
M
¡p
!

· M

p
(N ¡M +1)

Ã
d̄

v
+(±̄+ ¿̄ + ±̄c)

Ã
NX
i=1

pi
M
¡p
!!

+

μ
±̄

p
+
d̄

pv

¶Ã
p̄+

NX
i=1

pi
M
¡p
!

576 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 2 APRIL 2008

· (±̄+ ¿̄ + ±̄c)
p

Ã
NX
i=1

pi ¡Mp
!
(N ¡M +1)

+
d̄

pv

Ã
M(N ¡M +1)+ p̄+

NX
i=1

pi
M
¡p
!

+
±̄

p

Ã
p̄+

NX
i=1

pi
M
¡p
!
: (27)

Now, we must show that each task will get chosen by
some UAV j 2Q infinitely often so that every task
becomes i¤jc persistently so that (27) provides a bound
for each ti(t) i 2 P. Note that we have a bound for
every kj

c
for every ti¤

jc
(kjc)(Dkjc) via (27), and using (3),

Dkj+1¡Dkjc is bounded. This results in a maximum
bound on the time that the unattended set will not be
changed. “Ignored time” for tasks rises so eventually
any ignored task in U(t) will be taken off U(t) and
hence become i¤jc .
Case a.2 Now, we study the case when

Ti¤
jc
(kjc)(Dkjc + °)=¿i¤

jc(kj
c
)

<
P
i2U(D

kj
c
+°
)pi=M, for some

kj
c
. If this is the case, then Vjc(Dkj+1)>Vjc(Dkjc + °).

Thus, we obtain that Vjc(t)· Vjc(Dkj+1) for any t,
Dkjc · t·Dkj+1. However, this cannot always be the
case because if Vjc(Dkj+1)>Vjc(Dkjc + °), k

jc , then the
function Vjc is increasing all the time, which means
that all Tis in the unattended set grow much more
faster than the value of Ti¤

jc
being currently processed.

But if this is the case, then sooner or later the
condition Ti¤

jc
(kjc)(Dkjc + °)=¿i¤

jc(kj
c
)
¸Pi2U(D

kj
c
+°)
pi=M

will be satisfied since any ignored task will later
become i¤jc and this is the reason why we say that
Ti¤
jc
(kjc)(Dkjc + °)=¿i¤

jc(kj
c
)

<
P
i2U(D

kj
c
+°)
pi=M holds for

some kj
c
.

Now, for this case

Vjc (Dkj+1) = Ti¤
jc
(kjc)(Dkj+1)+

X
i2U(D

kj
+1)

Ti(Dkj+1)
M

= Ti¤
jc
(kjc)(Dkjc) + °pi¤

jc
(kjc)¡ (Dkj+1¡Dkjc ¡ °)

£
Ti¤
jc
(kjc)(Dkj+1¡Dkjc ¡ °)

¿i¤
jc
(kjc)

+
X

i2U(D
kj
c)

Ti(Dkjc)
M

+(Dkj+1¡Dkjc)
X

i2U(D
kj
c)

pi
M

· Vjc (Dkjc) + °pi¤
jc
(kjc) + (Dkj+1¡Dkjc)

X
i2U(D

kj
c)

pi
M

· Vjc (Dkjc) + p̄
μ
±̄+

d̄

v

¶

+

μ
±̄+ ¿̄ + ±̄c+

d̄

v

¶Ã NX
i=1

pi
M
¡p
!
: (28)

Next, we apply the same steps taken in (27) to obtain
that

lim
t!1

ti¤
jc
(t)· M

p
(N ¡M +1)¯+

p̄

p

μ
±̄+

d̄

v

¶

+
(±̄+ ¿̄ + ±̄c+ d̄=v)

p

Ã
NX
i=1

pi
M
¡p
!

· M

p
(N ¡M +1)

Ã
d̄

v
+(±̄+ ¿̄ + ±̄c)

Ã
NX
i=1

pi
M
¡p
!!

+
p̄

p

μ
±̄+

d̄

v

¶
+
(±̄+ ¿̄ + ±̄c+ d̄=v)

p

Ã
NX
i=1

pi
M
¡p
!

· (±̄+ ¿̄ + ±̄c)
p

Ã
NX
i=1

pi
M
¡p
!
(NM ¡M2 +M +1)

+
d̄

pv

Ã
M(N ¡M +1)+ p̄+

NX
i=1

pi
M
¡p
!
+
±̄

p
p̄

(29)

where it can be seen that the bound obtained in (29)
is greater than the one shown in (27) due to the extra
parameters in the first and last term in (29). Notice
that (29) is equal to the variable B1 shown in the
statement of the theorem in Section V.
Case b Consider

P
i2U(D

kj
c)pi >M,k

jc . Note that
for this case we have

Ti¤
jc
(kjc)(Dkjc)¡

d(xj
c

v (Dkjc),x
i¤
jc
(kj

c
))

v

> Ti¤
j
(kj)(Dkj)¡

d(xjv(Dkj),x
i¤
j
(kj))

v

X
i2U(D

kj
)

pi
M

(30)

and both the left and the right-hand side of (30) are
greater or equal to

1
N ¡M +1

X
ij2Uaj (Dkjc)

24Tij (Dkjc)¡ d(xjcv (Dkjc),xij (kjc))v

X
i2U(D

kj
c)

pi
M

35 :
If we use the above result in (14) then we are solving
the problem for the strategy defined in (6). The final
result will be, of course, more conservative. As in the
last case, we have here two possibilities and we study
them next.
Case b.1 If Ti¤

jc
(kjc)(Dkjc + °)=¿i¤

jc
(kjc) ¸P

i2U(D
kj
c+°)pi=M ,k

jc , then Vjc(Dkj+1)· Vjc(Dkjc + °).
Thus, we obtain that Vjc(t)· Vjc(Dkjc + °) for any t,
Dkjc · t·Dkj+1.
Note that for this case (22) and (23) still hold

except that ¯ is different from the one obtained in
case a. Furthermore, we have already derived in (26)

GIL ET AL.: COOPERATIVE TASK SCHEDULING FOR NETWORKED UNINHABITED AIR VEHICLES 577

that

Vjc

Ã
Dkjc + ±i,jc(kjc) +

d(xj
c

v (Dkjc),x
i¤
jc
(kj

c
))

v

!

· Vjc(Dkjc)+
Ã
±̄+

d̄

v

!Ã
p̄+

NX
i=1

pi
M
¡p
!
:

Now, the procedure to obtain a bound for this case is
the same as the one followed in Case a.1 except that
for this particular case we have

¯ =
d̄

v

Ã
NX
i=1

pi
M
¡p
!
+(±̄+ ¿̄ + ±̄c)

Ã
NX
i=1

pi
M
¡p
!

where the term that multiplies to d̄=v in the first term
of the right-hand side of the above equation is derived
from (18). Notice that this term was not present in
case a) since

P
i2U(D

kj
c)pi=M < 1.

Hence,

lim
t!1

ti¤
jc
(t)· (N ¡M +1)

p

Ã
NX
i=1

pi¡Mp
!μ

d̄

v
+ ±̄+ ¿̄ + ±̄c

¶

+
(d̄=v+ ±̄)

p

Ã
p̄+

NX
i=1

pi
M
¡p
!

· (±̄+ ¿̄ + ±̄c)
p

Ã
NX
i=1

pi¡Mp
!
(N ¡M +1)

+
d̄

pv

Ã
NX
i=1

pi¡Mp
!μ

N ¡M +1+
1
M

¶

+
±̄

p

Ã
p̄+

NX
i=1

pi
M
¡p
!
+
p̄d̄

pv
: (31)

Case b.2 If Ti¤
jc
(kjc)(Dkjc + °)=¿i¤

jc(kj
c
)
<P

i2U(D
kj
c
+°)
pi=M, for some k

jc , then Vjc(Dkj+1)>

Vjc(Dkjc + °). Thus, we obtain that Vjc(t)· Vjc(Dkj+1)
for any t, Dkjc · t·Dkj+1. Therefore, by using both
the same arguments and (28) as in Case a.2 we obtain
that

Vjc(Dkj +1)· Vjc(Dkjc)+ p̄
Ã
±̄+

d̄

v

!

+

Ã
±̄+ ¿̄ + ±̄c+

d̄

v

!Ã
NX
i=1

pi
M
¡p
!
:

Hence,

lim
t!1

ti¤
jc
(t)· M

p
(N ¡M +1)¯+

p̄

p

μ
±̄+

d̄

v

¶

+
(±̄+ ¿̄ + ±̄c+ d̄=v)

p

Ã
NX
i=1

pi
M
¡p
!

· M

p
(N ¡M +1)

"μ
d̄

v
+ ±̄+ ¿̄ + ±̄c

¶Ã NX
i=1

pi
M
¡p
!#

+
p̄

p

μ
±̄+

d̄

v

¶
+
(±̄+ ¿̄ + ±̄c+ d̄=v)

p

Ã
NX
i=1

pi
M
¡p
!

· (±̄+ ¿̄ + ±̄c+ d̄=v)
p

Ã
NX
i=1

pi
M
¡p
!

£ (NM ¡M2 +M +1)+
p̄

p

μ
±̄+

d̄

v

¶
(32)

where we can see that the bound obtained in (32) is
greater than the one obtained in (31). Notice that (32)
is equal to the variable B2 shown in the statement of
the theorem in Section V.
On the other hand, it can be easily seen that if

Vjc(Dkjc + °) does not occur at any t, Dkjc · t·Dkj+1,
then this cannot happen all the time since there exists
a time interval different from Dkjc · t ·Dkj+1 where
this event will take place. Note that we do not need
to study this particular case since this is a special
case of the ones studied in Cases a.2 and b.2. This
concludes the proof of the theorem stated in
Section V.

REFERENCES

[1] Gil, A. E., and Passino, K. M.
Stability analysis of network-based cooperative resource
allocation strategies.
In Proceedings of the IEEE Conference on Decision and
Control, Maui, HI, Dec. 2003, 1206—1211.

[2] Gil, A. E., Passino, K. M., Ganapathy, S., and Sparks, A.
Cooperative scheduling of tasks for networked
uninhabited autonomous vehicles.
In Proceedings of the IEEE Conference on Decision and
Control, Maui, HI, Dec. 2003, 522—527.

[3] Laporte, G.
The vehicle routing problem: An overview of the exact
and approximate algorithms.
European Journal of Operational Research, 59 (1992),
345—358.

[4] Cassandras, C. G., and Li, W.
A receding horizon approach for solving some
cooperative control problems.
In Proceedings of the IEEE Conference on Decision and
Control, Las Vegas, NV, Dec. 2002, 3760—3765.

[5] Castanon, D. A., and Cassandras, C. G.
Cooperative mission control for unmanned air vehicles.
In Proceedings of the AFOSR Workshop on Dynamic
Systems and Control, Pasadena, CA, Aug. 2002, 57—60.

[6] Bellingham, J., Richards, A., and How, J.
Receding horizon control of autonomous aerial vehicles.
In Proceedings of the American Control Conference,
Anchorage, AK, May 2002, 3741—3746.

[7] Li, W., and Cassandras, C. G.
Stability properties of a cooperative receding horizon
controller.
In Proceedings of the IEEE Conference on Decision and
Control, Maui, HI, Dec. 2003, 492—497.

578 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 2 APRIL 2008

[8] Chandler, P. R., Pachter, M., and Rasmussen, S.
UAV cooperative control.
In Proceedings of the American Control Conference,
Arlington, VA, June 2001, 50—55.

[9] Beard, R., McLain, T., and Goodrich, M.
Coordinated target assignment and intercept for
unmanned air vehicles.
In Proceedings of IEEE International Conference on
Robotics and Automation, Washington, D.C., May 2002,
2581—2586.

[10] Chandler, P., et al.
Complexity in UAV cooperative control.
In Proceedings of the American Control Conference,
Anchorage, AK, May 2002, 1831—1836.

[11] Jin, Y., Minai, A. A., and Polycarpou, M. M.
Cooperative real-time search and task allocation in UAV
teams.
In Proceedings of the IEEE Conference on Decision and
Control, Maui, HI, Dec. 2003, 7—12.

[12] Passino, K. M., Polycarpou, M., Jacques, D., Pachter, M.,
Liu, Y., Yang, Y., Flint, M., and Baum, M.
Cooperative control for autonomous air vehicles.
In R. Murphey and P. M. Pardalos (Eds.), Cooperative
Control and Optimization, vol. 66, Boston: Kluwer
Academic Publishers, 2002, 233—271.

[13] Baum, M., and Passino, K.
A search-theoretic approach to cooperative control for
uninhabited air vehicles.
Presented at AIAA GNC Conference, Monterrey, CA,
Aug. 2001.

[14] Hespanha, J., and Kizilocak, H.
Efficient computation of dynamic probabilistic maps.
In Proceedings of the 10th Mediterranean Conference on
Control and Automation, Lisbon, Portugal, July 2002.

[15] Hespanha, J., Kizilocak, H., and Ateskan, Y.
Probabilistic map building for aircraft-tracking radars.
In Proceedings of the American Control Conference,
Arlington, VA, June 2001, 4381—4386.

[16] Mahajan, A., Ko, J., and Sengupta, R.
Distributed probabilistic map service.
In Proceedings of the IEEE Conference on Decision and
Control, Las Vegas, NV, Dec. 2002, 130—135.

[17] Ganapathy, S., and Passino, K.
Agreement strategies for cooperative control of
uninhabited autonomous vehicles.
In Proceedings of the 2003 American Control Conference,
Denver, CO, June 2003, 1026—1031.

[18] Jun, M., Chaudhly, A. I., and D’Andrea, R.
The navigation of autonomous vehicles in uncertain
dynamic environments: A case study.
In Proceedings of the IEEE Conference on Decision and
Control, Las Vegas, NV, Dec. 2002, 3770—3775.

[19] Ganapathy, S., and Passino, K.
Distributed agreement strategies for cooperative control:
Modeling and scalability analysis.
In Proceedings of the Conference on Cooperative Control
and Optimization, Gainsville, FL, Dec. 2002, 127—147.

[20] Castanon, D. A., and Wu, C.
Distributed algorithms for dynamic reassigment.
In Proceedings of the IEEE Conference on Decision and
Control, Maui, HI, Dec. 2003, 13—18.

[21] Beard, R. W., and McLain, T. W.
Multiple UAV cooperative search under collision
avoidance and limited range communication constraints.
In Proceedings of the IEEE Conference on Decision and
Control, Maui, HI, Dec. 2003, 25—30.

[22] Finke, J., Passino, K. M., and Sparks, A.
Cooperative control via task load balancing for networked
uninhabited autonomous vehicles.
In Proceedings of the IEEE Conference on Decision and
Control, Maui, HI, Dec. 2003, 31—36.

[23] Matarić, M. J.
Issues and approaches in the design of collective
autonomous agents.
Robotics and Autonomous Systems, 16 (1995), 321—331.

[24] Balch, T., and Arkin, R. C.
Behavior-based formation control for multirobot teams.
IEEE Transactions on Robotics and Automation, 14 (Dec.
1998), 926—939.

[25] Suzuki, I., and Yamashita, M.
Distributed anonymous mobile robots: Formation of
geometric patterns.
SIAM Journal on Computing, 28, 4 (1999), 1347—1363.

[26] Billard, E. A., and Riedmiller, A. E.
Stability conditions for agents pursuing individual goals
under uncertainty.
In Proceedings of the IEEE International Symposium on
Autonomous Decentralized Systems, Apr. 1995, 360—367.

[27] Subramanian, S. K., and Cruz, J. B.
Adaptive models of pop-up threats for multi-agent
persistent area denial.
In Proceedings of the IEEE Conference on Decision and
Control, Maui, HI, Dec. 2003, 510—515.

[28] Dubins, L.
On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal
position.
American Journal of Math, 79 (1957), 497—516.

[29] Sussman, H. J., and Tang, G.
Shortest paths for the Reeds-Shepp car: A worked out
example of the use of geometric techniques in nonlinear
optimal control.
Rutgers University, New Brunswick, NJ, Technical Report
SYCON-91-10, 1991.

[30] Perkins, J. R., and Kumar, P. R.
Stable, distributed, real-time scheduling of flexible
manufacturing/assembly/disassembly systems.
IEEE Transactions on Automatic Control, 34 (Feb. 1989),
139—148.

[31] Quijano, N., Gil, A. E., and Passino, K. M.
Experiments for decentralized and networked dynamic
resource allocation, scheduling, and control.
IEEE Control Systems Magazine, 25 (Feb. 2005), 63—79.

[32] Kumar, P. R., and Seidman, T. J.
Dynamic instabilities and stabilization methods in
distributed real-time scheduling of manufacturing
systems.
IEEE Transactions on Automatic Control, 35 (Mar. 1990),
289—298.

GIL ET AL.: COOPERATIVE TASK SCHEDULING FOR NETWORKED UNINHABITED AIR VEHICLES 579

Alvaro E. Gil received his B.S. and M.S. degrees in electrical engineering from
Instituto Universitario Politécnico, Barquisimeto, Venezuela, in 1990 and 1998,
respectively, and the Ph.D. degree in electrical engineering from The Ohio State
University, Columbus, in 2003.
From 1990 to 1999, he held engineering positions in the Automation

Department at Petróleos de Venezuela (PDVSA) in Maracaibo, Venezuela.
From 2002 to 2003 he was a research associate at the Department of Electrical
Engineering, The Ohio State University. He worked as a postdoctoral researcher
at the Ohio State University between 2003 and 2005. He is now with Xerox
Corporation, Webster, NY. His current research interests include networked
cooperative resource allocation strategies, cooperative scheduling, distributed
mobile sensor networks, and multiobjective control.

Kevin M. Passino (S’79–M’90–SM’96–F’04) is currently a Professor of
Electrical and Computer Engineering at The Ohio State University and Director
of the OSU Collaborative Center of Control Science that is funded by AFOSR
and AFRL/VA.
Dr. Passino has served as the Vice President of Technical Activities of the

IEEE Control Systems Society (CSS); was an elected member of the IEEE
Control Systems Society Board of Governors; was the Program Chair of the
2001 IEEE Conference on Decision and Control; and is currently a Distinguished
Lecturer for the IEEE Control Systems Society. He is coeditor (with P. J.
Antsaklis) of the book An Introduction to Intelligent and Autonomous Control
(Kluwer Academic Press, 1993); coauthor (with S. Yurkovich) of the book Fuzzy
Control, (Addison Wesley Longman Publishing, 1998); coauthor (with K. L.
Burgess) of the book Stability Analysis of Discrete Event Systems, (John Wiley and
Sons, 1998); coauthor (with V. Gazi, M. L. Moore, W. Shackleford, F. Proctor,
and J. S. Albus) of the book The RCS Handbook: Tools for Real Time Control
Systems Software Development, (John Wiley and Sons, NY, 2001); coauthor (with
J. T. Spooner, M. Maggiore, R. Ordonez) of the book Stable Adaptive Control
and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques,
(John Wiley and Sons, NY, 2002); and author of Biomimicry for Optimization,
Control, and Automation, (Springer-Verlag, London, UK, 2005).

580 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 2 APRIL 2008

Andrew Sparks received his B.S. and M.S. in mechanical engineering from the
Massachusetts Institute of Technology, Cambridge, in 1986 and 1988 and his
Ph.D. in aerospace engineering from the University of Michigan, Ann Arbor, in
1995.
Since 1988 he has been with the Air Vehicles Directorate at the U.S. Air

Force Research Laboratory at Wright Patterson Air Force Base, OH, where he
has worked on robust, multivariable control systems for a variety of air and
space vehicles and subsystems. Most recently he worked as a team lead for the
Unmanned Air Vehicle group of the Control Science Center of Excellence.

Sriram Ganapathy received his M.S. in electrical and computer engineering at
The Ohio State University. He is currently a controls engineer at General Motors
Global Research and Development at Honeoye Falls, NY.

GIL ET AL.: COOPERATIVE TASK SCHEDULING FOR NETWORKED UNINHABITED AIR VEHICLES 581

