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On Optimal Proactive Caching for Mobile
Networks with Demand Uncertainties

John Tadrous, and Atilla Eryilmaz

Abstract—Mobile data users are known to possess pre-
dictable characteristics both in their interests and activity
patterns. Yet, their service is predominantly performed, espe-
cially at the wireless edges, “reactively” at the time of request,
typically when the network is under heavy traffic-load. This
strategy incurs excessive costs to the service providers to sustain
on-time (or delay-intolerant) delivery of data content, while their
resources are left underutilized during the light-loaded hours.

This motivates us in this work to study the problem of
optimal “proactive” caching whereby, future delay-intolerant
data demands can be served within a given prediction window
ahead of their actual time-of-arrival to minimize service costs.
To that end, we first establish fundamental bounds on the
minimum possible cost achievable by any proactive policy,
as a function of the prediction uncertainties. These bounds
provide interesting insights on the impact of uncertainty on
the maximum achievable proactive gains. We then propose
specific proactive caching strategies, both for uniform and
fluctuating demand patterns, that are asymptotically-optimal
in the limit as the prediction window size grows while the
prediction uncertainties remain fixed. We further establish the
exponential convergence rate characteristics of our proposed
solutions to the optimal, revealing close-to-optimal performance
characteristics of our designs even with small prediction win-
dows. Also, proactive design is contrasted with its reactive and
delay-tolerant counter-parts to obtain interesting results on the
unavoidable costs of uncertainty and the potentially remarkable
gains of proactive operation.

I. INTRODUCTION

Recently, the wireless spectrum has been witnessing
tremendous demand to support the emerging throughput-
hungry applications (e.g., HD video streaming), which are
dominating the wireless data traffic nowadays. By 2016,
traffic from wireless and mobile devices is projected to
exceed that of wired devices, and the demand on wireless
data traffic is expected to multiply by 13 fold between 2012
and 2017 [1]. Coupling these findings with the fact that the
available spectrum for wireless communications is a limited
resource, a major spectrum shortage problem is facing the
wireless communication industry.

It is well documented by FCC that the wireless spectrum
consistently incurs periods of underutilization on a daily
basis [2], [3], which is attributed to the users’ behavioral
patterns as most users idle together in the off-peak times.
This study is also strengthened by the wireless spectrum
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measurements carried out by RRDTool [4], [5], the wireless
spectrum tracking client, and the recent data traces collected
by major European operators in [6]. Thus, the demand on
wireless spectrum varies between a peak level at which
service providers incur excessive costs to provide reliable
delivery of data content, and an off-peak level at which the
precious resource is left underutilized.

There has been extensive research to tackle such a prob-
lem, some of which has particularly considered offering
pricing incentives for end-users to shift their demand to the
off-peak times. Of these, the cognitive radio approach [7],
[8], [9] enables out-of-band users to enhance the utilization
of the spectrum in the off-peak times through low-priced
service. Attempts as in [10], [11] jointly assign pricing and
scheduling of data services to flatten the demand fluctuations
over time. In particular, pricing incentives are traded for
extra delay tolerance, hence scheduling policies can be
optimized over longer time horizon and consequently attain
reduced cost performance.

WiFi offloading [12]-[15] has also gained considerable
attention to mitigate the contention on the limited spectrum
of wireless carriers in the peak hour, and ideas about
rescheduling of carriers’ traffic through WiFi networks have
been studied. However, WiFi coverage is not present in
several outdoor locations where impact of peak hour traffic
congestions is severe. For instance, public transit riders
suffer degraded QoS since all their wireless access has to
be routed through the cellular network. In addition, WiFi
networks suffer the same large peak to off-peak demand ratio
which requires particular attention to the temporal aspect of
content service.

In the aforementioned approaches, scheduling of wire-
less demand is applied reactively so that data requests are
initiated beforehand then the service provider utilizes the
leveraged delay tolerance from end-users to schedule them
efficiently. Numerous back pressure, and virtual queuing
techniques have been developed to tackle a variety of
network optimization objectives (c.f. [16], [17] and the refer-
ences therein). Thus, cost reduction comes at the expense of
disturbed user activity patterns as the service is postponed to
off-peak times, or the next available WiFi connection [12].

Despite the predominance of reactive solutions in mobile
data services, it is also well-known that data users possess
consistent (therefore statistically predictable) interests and
activity patterns (e.g., [6], [18], [19], [20]). This has mo-
tivated a few recent works [21], [22] to develop proactive
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scheduling strategies to smooth out the network traffic over
time, reduce the service costs, and essentially preserve the
users’ activity patterns undisturbed. Such an approach has
also been implemented practically by some content provider
[23], [24].

In the proactive operation paradigm, rather than reactively
responding to incoming demands or postponing services, the
service provider utilizes the statistically predictable, albeit
uncertain, nature of future user demands to pre-fetch the
predictable demand of end-users during off-peak times so
that it can be served in part from the local memory upon
request. Hence, end-users need not change their regular
demand activities.

Earlier works in this new domain, however, have focused
on the scenario of perfectly predictable demand where ser-
vice providers possess full certainty about the future demand
instants of each user through a predetermined prediction
window size. Yet, prediction uncertainties not only exist
almost unavoidably, but they also fundamentally change the
nature of the problem as they raise the possibility of wasting
resources by proactively serving undesired data.

Recent works such as [25], [26] have considered the
impact of uncertainty about the exact user demand where
service providers offer valuations and pricing incentives to
enhance predictability of user requests over a set of data
items. Yet, uncertainty about user activity, that is, whether
the user will request content at all or not, is not well
studied. Further, developed algorithms in those works have
been limited to off-line (static) implementation with one slot-
ahead proactive service.

In this work, we give particular attention to the impact
of uncertainty about user activity and consider the design
of on-line (dynamic) proactive strategies that can optimally
balance the gains of low-cost transmissions with the risk
of unnecessary resource consumption due to prediction
uncertainties. In particular, we study the unavoidable costs
of uncertainty due to imperfect prediction of user activity,
even when service providers manage to achieve perfect
knowledge about the content to be consumed. Our model
also generalizes the proactive download window size to more
than one slot ahead.

In particular, we consider the generic scenario (described
in Section II) of a service provider that provides “delay-
intolerant” (also called on-time) services1 to a group of users
who generate possibly time-varying requests that are pre-
dictable T time slots ahead of time, but with uncertainties.
The main objective (also in Section II) is for the service
provider to perform proactive service decisions depending on
the degree of uncertainty about future requests to minimize
its expected convex cost over time while maintaining on-
time delivery of requested content.

In Section III, we address the basic prediction scenario
in which each user demand arrives uniformly over time so
that we can isolate the impact of prediction uncertainty on

1Delay-intolerant in that the service must be received within the same
slot that it is requested.

the design and performance. For that model, we establish
a global lower bound that captures the impact of demand
uncertainties on the optimal attainable performance. More-
over, we develop an asymptotically optimal stationary policy
which achieves the lower bound as T grows to infinity
with an exponential convergence speed. Further, we contrast
the performance of our design with its reactive and the
infinitely delay-tolerant counterparts to reveal the impact of
uncertainty on proactive gains.

Then, in Section IV, we extend the previous scenario to
the more realistic case of fluctuating demand patterns in
order to explore the impact of peak and off-peak differences
on the proactive design and performance. We establish a
global lower bound for this prediction model and show that
it has a significant potential to minimize the cost below
that of Section III. We develop an asymptotically optimal
cyclostationary proactive caching policy which attains such
lower bound. Similar to the uniform demand case, we also
establish the convergence speed of the developed policies to
the lower bound to be exponential in T .

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the time-slotted operation of a network
comprising a service provider, that provides data content to
end users, e.g., YouTube, Netflix, CNN, Facebook, ESPN,
etc., and a set N = {1, · · · , N} of N users. In our design,
we focus primarily on large time scale of operation whereby
the time slot duration is comparable to the duration of
content consumption, which may range from minutes to
hours depending on the nature of the services.

As we consider data content providers, remain in system
for much larger durations than that of a time slot. In
particular, users subscribe through monthly or annual plans
while they consume content in minutes or at most hours.
Thus, we approximate the duration of cost optimization
to be of infinite horizon, over which the number of users
(subscribers) is considered fixed.

User Demand Requirements: Over the infinite time hori-
zon, each user n generates an independent sequence of
requests {Rn,t}t, where Rn,t ∈ {0, 1} is is an indicator of
a request in slot t with πn,t := P (Rn,t = 1). That is, πn,t
is the probability that user n generates a request at time t.
We assume that to serve each request the service provider
consumes a uniform amount S of resources2.

These demands are delay-intolerant in that when a request
arrives to the service provider, it has to be fulfilled within
the same time slot of arrival. This is true for most content
services of interest, e.g., On-Demand Video services, news
or social networking updates, especially under the large time
scale network operation that is considered in our work.

2We note that the results and insights obtained in this paper apply to the
more general case of S being user dependent, and some special cases of
time dependency. In particular, Sn,t is the amount of resources required to
serve demand of user n at time t, with Sn,t being known to the service
provider, e.g., cyclic with some period T as discussed in the fluctuating
demand case. Yet, we consider a constant S for simplicity of notation and
ease of exposition.
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Fluctuating Demand Pattern: Large time-scale data net-
works are known to exhibit statistically fluctuating, periodic
demand patterns, typically on a daily basis [4], [6], [11].
Accordingly, we assume that each day is divided into T
time slots whereby a user can generate one request per each
slot according to the statistics of Rn,t, and only require the
following mild ergodicity characteristics

lim
t→∞

1

t

t−1∑
l=0

Rn,l = πn, w.p. 1, n = 1, · · ·N. (1)

That is, πn is the time-average demand probability for user
n. Note that this assumption does not preclude the demand
pattern from being time-varying, as will be introduced next.

The daily user activity is assumed to yield K ≥ 1
levels of average demand. Each user n changes his demand
probabilities through π

(1)
n , π(2)

n , · · · , π(K)
n , over the course

of the day. The demand probability of period k for user n
spans a fraction p

(k)
n of the T -slot day. That is, if the day

starts by slot 0, then user n requests data w.p. πn,t = π
(1)
n

on slots t ∈ {0, · · · , p(1)n T − 1}, and so on, as illustrated
in Fig. 1. Hence, we have p(k)n ≥ 0, and

∑K
k=1 p

(k)
n = 1,

∀n. These demand characteristics are repeated consistently
every day in accordance with the regular user activities as
in Fig. 1.
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Fig. 1: Cyclostationary demand for user n. Average demand
consistently assumes K different values every day depending
on the user activity.

In the sequel (especially in Section IV), we will use the
compact notation Π(K) := (π

(k)
n , p

(k)
n )k=1,··· ,K

n=1,··· ,N to charac-
terize the fluctuating daily demand profile of the network.

Service Cost Structure: We assume that the cost of serving
a total amount x ≥ 0 of demand in a single slot is captured
by a strictly convex, increasing function C(x) : R+ → R.
Minimization of time-averaged costs for such functions calls
for the smoothing of the load over time, as is desired by all
service providers. In our numerical investigations, we will
consider polynomial forms for this cost, while the results
are obtained for the above general class. Thus, the obtained
results in this work hold under convex cost structure. As
we consider large time scale of operation whereby time
slot duration spans several minutes, fading dynamics of
wireless channel are assumed averaged out, and hence are
not incorporated in the cost function. Similar assumptions
have been considered in other works on large time scale
optimization such as [11], [12], [13], [14], [15].

Reactive Operation Paradigm: As a baseline scenario,
we consider the predominant practice of reactive network

operation, whereby the requests are served upon their arrival.
Thus, under reactive service, the total load present at the
service provider in slot t is given by: LRt := S

∑N
n=1Rn,t,

since all N user requests initiated in slot t have to be
served in the same slot. Thus the corresponding time-
average expected cost for the reactive service model is given
by cR(Π(K)) := limt→∞

1
t

∑t−1
l=0 E

[
C
(
LRl
)]
, where the

distribution of {Rn,t}n,t is governed by the profile Π(K) as
described above. Clearly, such a reactive model represents a
worst case cost performance for the service provider side as
it carries no proactive resource allocation strategies.

Proactive Operation Paradigm: We assume that the service
provider is aware of the demand profile Π(K) which captures
the statistical characteristics of future demand, yet with
uncertainties (see Fig. 2).
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Fig. 2: Proactive service model.

Based on such uncertainties, proactive data services are
carefully employed over a day-ahead (T -slot) time window
so as to smooth out the network traffic over time. We denote
by un,t(τ) the amount of service applied at time t to a
potential request from user n that is expected to arrive after
τ time slots, i.e., at time t + τ , where 1 ≤ τ ≤ T . The
proactive service of a future request can not exceed the total
demand of S units of service, i.e.,

T∑
τ=1

un,t−τ (τ) ≤ S, ∀n, t, (2)

and the proactive service can never be negative, i.e.,

un,t(τ) ≥ 0, ∀n, t, τ. (3)

Then, the expected system load in a time slot t under
proactive control ut := [un,t(τ)]n,τ is given by

LPt (ut) :=

N∑
n=1

((
S −

T∑
τ=1

un,t−τ (τ)

)
Rn,t +

T∑
τ=1

un,t(τ)

)
,

which consists of the on-time service component resulting
from the non-proactively served part of the request, and the
proactive service of future requests in the upcoming T -slot
interval (compare to LR under the reactive operation).

Here we note the implicit assumption that the service
provider is only uncertain about whether each user is going
to generate a request or not, i.e., uncertainty about user
activity. Yet, the service provider is assumed to anticipate the
exact content the user will demand given the user generates a
request at all. This assumption is motivated by the recent ad-
vances on machine learning, collaborative filtering, and big
data analysis which enable several service providers (e.g.,
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Netflix and YouTube) to successfully recommend content to
subscribers [27], [28], [29].

In addition, our earlier works [25], [26] have particularly
studied the impact of uncertainty about the exact content to
be requested by end-users, and have established the notion
of demand shaping through valuations and pricing incentives
whereby service providers can significantly enhance such
certainty and quality of proactive downloads. Thus in this
work we move on to the study of the impact of uncertainty
about the user activity assuming service providers are capa-
ble of fully predicting the exact content to be requested, in
case of a request.

Problem Statement and Notion of Asymptotic Optimal-
ity: The objective of proactive design is to develop the
controller that minimizes the time average expected cost

cPT (Π(K)) := min
{ul}l

lim sup
t→∞

1

t

t−1∑
l=0

E
[
C
(
LPl (ul,Π(K))

)]
(4)

s.t., Constraints (2), (3).

where the subscript T captures the proactive service window
size3, and the superscript P indicates proactive operation.

The exact solution of (4) is intractably complex due to the
infinite dimensionality of the problem. Instead, we aim to de-
velop efficient proactive caching policies that can optimally
utilize statistical predictions as the prediction window grows.
Fortunately, our analysis will also show that the performance
of these policies converge to the optimal exponentially
fast, thereby possess close-to-optimal performance even for
moderate values of the prediction window.

Before the present the design and analysis of such asymp-
totically optimal stationary policies, we formally define the
notion of asymptotic optimality as follows.

Definition 1: A proactive caching policy p is asymp-
totically optimal under the demand profile Π(K) if
lim supT→∞ |c

p
T (Π(K))− cPT (Π(K))| = 0.

III. PROACTIVE SERVICE OF UNIFORM DEMAND

We break down our analysis into two scenarios: that
of uniform demand discussed in the current section, and
that of fluctuating demand postponed to the next. Uniform
demand means we have time-invariant prediction errors
of future demand, whereas fluctuating demand means that
uncertainties are time-varying according to a cyclostationary
pattern as observed in datasets [4], [6]. This is done for two
reasons. First and foremost, considering uniform demand
allows us to isolate the impact of prediction uncertainties
from that of fluctuations. Second, the uniform demand case
allows us to present the main approach without the notational
complexity that time-varying demands necessitate.

Under our Uniform Demand model, {Rn,t}t for user n is
an independent and identically distributed (i.i.d.) sequence

3There is a slight abuse of notation since T represents both the number
of slots per day and the proactive window size. That is, proactive service
can be applied up to one day ahead.

of random variables with E[Rn,t] = πn, i.e., all requests
of the same user are statistically indistinguishable over
time. Note that such uniform demand is a special case of
the fluctuating pattern Π(K) introduced in Section II with
K = 1, p

(1)
n = 1 and π

(1)
n = πn, for all n. To clarify the

distinction, throughout this section, we simply use π instead
of Π(K) to characterize the uniform demand, and return to
the fluctuating case in Section IV.

We remark that uniform demand, as opposed to a fluc-
tuating demand with the same time-average, promises less
proactive gains, as all time slots being equally uncertain cre-
ates the highest confusion about the best way of proactively
performing services. Therefore, the proactive gains under
uniform demand comes only from the uncertain knowledge
of the demand captured by π := (πn)n.

Next, we establish a global lower bound as a function of
the prediction uncertainties π on the minimum attainable
cost by any proactive policy, and investigate its charac-
teristics. In the subsequent subsection, we will use the
lower bound to develop an asymptotically optimal proactive
caching policy.

A. Lower Bound on Minimum Cost for Uniform Demand

In this subsection, we first establish a lower bound on the
optimal performance by any proactive caching policy under
uniform demand. We draw interesting insights and remarks
on the impact of uncertainty on optimal proactive caching
by contrasting the resulting bound with that achievable only
with infinite delay tolerance, and that achieved by reactive
operation.

Theorem 1 (Lower Bound for Uniform Demand): Let
Bt =: {n ∈ N : Rn,t = 1} be the set of users that generate
data requests at time t according to π = (πn)n. Then, under
uniform demand, and for any T ≥ 1, the optimal proactive
caching cost, cPT (π) of (4), satisfies

cPT (π) ≥ cU (π), (5)

cU (π) := min
{µ̃n(B)}n,B

∑
B⊆N

P1(B)× (6)

C

∑
n∈B

(
S −

∑
D⊆N

P1(D)µ̃n(D)

)
+

N∑
n=1

µ̃n(B)


s.t. 0 ≤ µ̃n(B) ≤ S, ∀n,B,

where P1(B) :=
∏
n∈B πn

∏
m/∈B(1−πm) is the probability

of set Bt = B under the uniform demand model.
Proof. Please refer to Appendix A.

In the objective of (6), the term
∑
D⊆N P1(D)µ̃n(D)

captures the average proactive service assigned to a request
from user n before it is actually realized, where D ⊆ N
is a possible set of requesting users, and the term µ̃n(B) is
the total proactive service assigned to all possible requests
from user n when the current set of demanding users is B.
The theorem establishes that no proactive caching policy can
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achieve a lower cost than the non-trivial bound cU (π) under
the uniform demand model. We note that the optimization
of cU (π) is convex and yields a unique solution by the strict
convexity of C(·). Such optimization is numerically tractable
and can be easily computed, e.g. through dual or interior-
point methods.

The bound cU (π) is interesting in its own right, as it
captures the impact of unavoidable prediction uncertainties
π on the lowest attainable cost by proactive design, even
if it is known infinitely ahead of time. Deferring the goal
of attaining this bound to the subsection, we next develop
some interesting insights on it.
Insights on the Lower Bound:
(1) We first contrast our bound cU (π) to the trivial lower
bound under infinitely delay-tolerant services given by

c∗(π) := C

(
S
∑N
n=1 πn

)
. It is known that this c∗(π)

level of cost is achievable by stationary policies as the delay
tolerance grows to infinity (see e.g., [31] in the context
of smart grids). However, it is loose for proactive services
of delay-intolerant demands with unavoidable prediction
uncertainties π. This is because proactive caching must
experience the costs of prediction uncertainties that can
be eliminated by delay-tolerant services at the expense of
(potentially unboundedly high) delay. In fact, we next prove
that proactive caching cannot achieve c∗(π) unless at the
extreme conditions where the prediction is perfect.

Theorem 2 (Unavoidable Costs of Uniform Uncertainty):
Under the uniform demand model with given π, cU (π) ≥
c∗(π), with equality if and only if πn ∈ {0, 1}, ∀n ∈ N .
Proof. We first establish the result that full certainty about
future demand is necessary to achieve c∗(π).

Lemma 1: Let G1(t) := 1
t

∑t−1
l=0

∑N
n=1

∑T
τ=1 un,l(τ),

and G2 := 1
t

∑t−1
l=0

∑N
n=1

∑T
τ=1 un,l−τ (τ)Rn,l, then a

proactive caching policy {ut}t asymptotically achieves
c∗(π) only if lim inft→∞G1(t)−G2(t) = 0 w.p.1.

Proof. The proof follows by Jensen’s inequality, and
Fatou’s Lemma. Please refer to Appendix D.
Back to the proof of Theorem 2: Note that, G1(t) represents
the average proactive service applied, whereas G2(t) is the
average amount of such service that is actually matched by
user demand, hence made useful for the service provider.
The difference G1(t)−G2(t) captures the wasted proactive
service due to future demand uncertainties.

Lemma 1 shows that lim inft→∞G1(t)−G2(t) = 0 w.p.
1 is necessary to have the equality hold for any prediction
window T . Yet, for the uniform demand model and t > T ,
we have
t−1∑
l=0

N∑
n=1

T∑
τ=1

un,l(τ) ≥
t−1∑
l=0

N∑
n=1

T∑
τ=1

un,l−τ (τ)Rn,l, w.p. 1,

with equality if and only if Rn,l is identically 1 or 0 on
l = 0, 1, · · · for all n. This is realized when πn is either
1 or 0 respectively. Note that, when Rn,l is identically 0
on l = 0, · · · , the optimal control un,l(τ) is trivially 0 on
l = 0, 1, · · · .

(2) The previous insight shows that no proactive policy can
attain the delay-tolerant cost of c∗(π) except when πn ∈
{0, 1} for all n. Now, we turn to understanding the nature
of cU (π) within the extremes. The value of πn in such model
captures all information about demand uncertainty as well
as average demand level. We present some key insights on
the impact of π on the lower bound, in particular how it
affects the proactive gains.

Consider the proactive service of a single-user requesting
S units of service in each slot with probability π1. The
service of x units of service in a slot incurs a polynomial
cost function of degree d > 1, that is C(x) = xd.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average probability of request π̄1

E
x

p
e

c
te

d
 c

o
s

t
 

 

Reactive

Proactive Uniform Demand

Delay Tolerant

(a) Average incurred cost.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Average probability of request π̄1

C
o

s
t 

o
f 

u
n

c
e

rt
a

in
ty

 

 

Reactive

Proactive Uniform Demand

(b) Cost of uncertainty.

Fig. 3: Comparison of Reactive, Proactive, and Delay-
Tolerant costs under the uniform demand pattern.

Fig. 3a contrasts, for the case of d = 4, S = 1, and in-
creasing values of π1, the average costs cR(π1), cPU (π1), and
c∗(π1) achievable, respectively, by the reactive, proactive,
and infinitely delay-tolerant schemes. It shows that proactive
caching attains considerably lower cost as compared to the
reactive one, and almost follows the same trend of the delay-
tolerant case. In fact, the impact of uncertainty can be seen
through the slope of the cost curve. Proactive caching cost
increases slowly at small values of π1 as the system best
utilizes the increasing certainty as well as low load levels.
Yet, as π1 increases, costs tend to increase faster as the
system becomes more congested with incoming requests,
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thereby restricting the chances of shifting the load. To further
highlight the proactive-reactive comparison, in Fig. 3b, we
plot the cost of uncertainty of reactive and proactive op-
eration by plotting (cR(π)− c∗(π)) and (cU (π)− c∗(π)),
which measures the relative cost incurred due to lack of exact
information about future demand, as compared to that of
delay-tolerant services. It reveals both reactive and proactive
schemes must suffer the cost of uncertainty with the ex-
tremes of π1 ∈ {0, 1}. Yet, reactive scheduling suffers heavy
cost of uncertainty since it does not utilize the statistical
information about future demand, however uncertain it is.
In contrast, proactive caching suffers significantly less as it
exploits the statistical knowledge about future.
(3) While uniform demand scenario assumes πn,t = πn, ∀t,
the lower bound cU (π) still applies if {πn,t}n,t are unknown
(unobservable) random variables, yet satisfy the ergodicity
condition (1). This can be seen through the proof of Theorem
1, where conditioning over set Bl is still applicable, and
ergodicity condition (1) ensures that P (Bl = B) = P1(B).
Thus, systems that are unaware of the per slot demand
probability πn,t (even with πn,t are non-identical over time)
can not attain cost performance that is smaller than cU (π).

We now move on to the design and analysis of a specific
proactive caching policy that asymptotically achieves the
lower bound cU (π) with growing prediction window size.

B. Stationary Proactive Caching Policy Design & Analysis

In this subsection, we introduce a simple proactive
caching policy for the uniform demand model, prove its
asymptotic optimality as defined in Definition 1, establish
its convergence rate, and analyze its performance gains
compared to its reactive counterpart for a specific setting.

Definition 2 (Proactive caching policy pU ): Given the
observed requests Bt = {n ∈ N : Rn,t = 1} in slot t,
our proactive caching policy pU sets its proactive control
parameter as: un,t(τ) = µn(Bt)

T , ∀n, t, τ , where {µn(B)}n,B
is the optimal solution of the minimization in (6).

Policy pU , thus, is a stationary policy that observes Bt, the
set of users who request content at time t, and accordingly
assigns proactive control value un,t(τ) = µn(Bt)/T for
all potential requests to may be requested in the upcoming
T slots. Intuitively, this policy determines its proactive
download amounts in response to Bt by utilizing the solution
of the lower bound (6), and then mimics processor-sharing
type of service discipline by equally spreading the given
amount over the horizon of the prediction window T. Next,
we show that this policy is asymptotically optimal as T
increases.

Theorem 3 (Asymptotic Optimality): Under the uniform
demand pattern described by π, our proactive caching policy
pU is asymptotically optimal (cf. Definition 1), therefore it
achieves cU (π) as T →∞.
Proof. Please refer to Appendix B.

While asymptotic optimality is theoretically encouraging,
it is of practical interest to find out whether the policy
possess desirable performance guarantees in non-asymptotic

regimes. This motivates us, next, to quantify the speed at
which pU performance approaches its asymptotic limit as
the prediction window size T grows.

Theorem 4 (Exponential Bounds on Convergence Speed):
Let δ > 0, then there exists a function g1 > 1 such that
g1(δ)→ 1 as δ → 0, and

cpUT (π)− cPT (π) ≤ δM + 2NMg1(δ)−T , (7)

where M is a positive constant.
Proof. Please refer to Appendix C.

This theorem establishes the desirable non-asymptotic
property of our policy pU that its cost reaches an arbi-
trarily small neighborhood of the optimal achievable level
exponentially fast with T . Such a property can be attributed
to the processor-sharing nature of the control variables
(e.g., µn(B)/T being assigned to all prospective requests),
which enables traffic averaging over time, thanks to strong
law of large numbers. Hence, system randomness decays
exponentially with the prediction window size.
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Fig. 4: Impact of proactive window size on achievable cost.

In Fig. 4, we plot the achieved time average cost under
pU against the prediction window size T to show its rapid
convergence to established lower bound. In the simulation,
N = 15, π1 = 0.5933, C(L) = L4.

Before concluding this section, we also share some in-
sights on the question of when the cost reduction of proactive
operation relative to its reactive counterpart is greatest.
We consider the scenario (as in Fig. 3) of a single-user
requesting S units of service in each slot with probability
π1. The service of x units of service in a slot incurs a
polynomial cost function of degree d > 1, that is C(x) = xd.
In this scenario, policy pU reduces to u1,t(τ) = µ(0)/T if
R1,t = 0, and µ(1)/T if R1,t = 1, where

(µ(0), µ(1)) := arg min
(µ̃(0),µ̃(1))<0

π1(S−(1−π1)µ̃(0)−π1µ̃(1)+µ̃(1))d+(1−π1)(µ̃(0))d.

Through simple differentiation, we get that µ(1) = 0 and
µ(0) = d−1

√
π1S/(1 + (1− π1) d−1

√
π1).

Proposition 1: For the above single user model with
costs C(L) = Ld, the relative cost reduction of our
policy pU with respect to reactive performance function
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calculated as γ(π1) :=
cR(π1)−limT→∞ c

pU
T (π1)

cR(π1)
is maxi-

mized at the unique value of π∗1 = 1/d, with the value

γ(π∗1) = 1
Sd

(
d

1
d−1

+1
S

d
1
d−1

+1
+d−1

)d
+ (1−d)

Sd

(
d S

d
1
d−1

+1
+d−1

)d
+ 1,

with γ(π∗1)→ 1 as d→∞.
The proof of proposition follows easily from simple calculus
while noting that µ(0) is a function of π1. Proposition 1
clearly shows that π1 = 1/d is the best operating point for
proactive gains over reactive ones under the uniform demand
pattern and polynomial cost function. It is clear that similar
optimal operating points will arise under different cost func-
tions, sharing the common characteristic of optimally bal-
ancing between utilizing the certainty about future demand,
and creating the opportunity for proactive services in idle
slots. On the other hand, the relative cost reduction achieved
asymptotically by an infinitely delay-tolerant operation is
given by (1− πd−11 ), which is monotonically decreasing in
π1, as there is no waste of service, hence increasing π1

can only limit potential caching opportunities and reduce
the system gain.

Remark 1 (Complexity of pU ): The controls of policy
pU require the solution to (6). While such optimization has
significant number of variables, N2N , it needs only to be
solved once, off-line, based on the long-term system statis-
tics π. Then, in the on-line operation, the service provider
has to only observe Bt and use the mapping {µn(Bt)}n
for proactive service. The size of such mapping is 2N , yet
using binary search, the complexity of determining proactive
controls in any time slot under policy pU is O(N).

IV. PROACTIVE SERVICE OF FLUCTUATING DEMAND

In this section, we return to the general model of
F luctuating Demand (i.e., K > 1) characterized by
Π(K) := (π

(k)
n , p

(k)
n )k=1,··· ,K

n=1,··· ,N as described in Section II, and
study the performance of proactive caching strategies that
utilize such fluctuations to proactively shift traffic forward
in time and attain minimum service costs. The development
follows the same structure as in Section III but with heavier
notation due to the time-varying statistics of the demands.

A. Lower Bound on Minimum Cost for Fluctuating Demand

Similar to Section III, we begin by introducing a lower
bound on the minimum time-average cost achievable by any
proactive caching policy, and contrast its performance for
varying Π(K) to the infinitely delay-tolerant and reactive
costs.

Recall that, the probability of demand from user n at time
t is given by πn,t. Accordingly, under fluctuating demand,
we can write

πn,t =

{
π

(1)
n , t (mod T ) < p(1)T,

π
(k)
n ,

∑k−1
m=1 p

(m)
n T ≤ t (mod T ) <

∑k
m=1 p

(m)T.

We collect the demand probabilities of all users at time t in a
set Jt as follows. Jt := {πn,t}Nn=1 . Finally, we quantify the

fraction of daily time slots through which set J of demand
probabilities is realized by Q2(J ), which is given as4

Q2(J ) =



0,
∑k1
m=1 p

(m)
ν1 <

∑k2−1
m=1 p

(m)
ν2 ,

for any p(k1)
ν1 , p

(k2)
ν2 ∈ J , k2 > 1,

minn p
(1)
n , J = {p(1)

n }n,
minn p

(K)
n , J = {p(K)

n }n,
1− J̌ − Ĵ , otherwise,

where J̌ := min(n,k){
∑k
m=1 p

(m)
n : p(k+1) ∈ J , k > 1},

Ĵ := min(n,k){
∑K
m=k+1 p

(m)
n : p(k−1) ∈ J , k < K}.

Now, we are ready to present the general lower bound in
the following theorem.

Theorem 5 (Lower Bound for Fluctuating Demand): Let
K := {π(k)

1 }Kk=1×· · ·×{π
(k)
N }Kk=1 be the set of all N -tuple

demand probabilities for the N users, and Π(K) = (π
(k)
n )n,k

characterizes complete fluctuating demand profile. Then, for
any T ≥ 1, the optimal proactive caching cost cPT (Π(K))
satisfies

cPT (Π(K)) ≥ cF (Π(K)), (8)

cF (Π(K)) := min
{µ̃n(B,I,J )}B,I,J

∑
I∈K

∑
B⊆N

Q2(I)P2(B|I)×

(9)

C

∑
n∈B

(
S −

∑
J∈K

∑
D⊆N

Q2(J )P2(D|J )µ̃n(D,J , I)

)

+

N∑
n=1

∑
J∈K

Q2(J )µ̃n(B, I,J )

)}
s.t. 0 ≤ µ̃n(B, I,J ) ≤ S, ∀n,B ⊆ N , I,J ∈ K,

P2(B|I) := P (Bt = B|Jt = I)

=
∏

{(n,k):n∈B,π(k)
n ∈I}

π(k)
n

∏
{(m,l):m/∈B,π(l)

m ∈I}

(1− π(l)
m ).

Proof. Follows the same steps as that of Theorem 1, except
conditioning goes over (Bt,Jt) instead of Bt only. Hence,
it is omitted for brevity.

Note that the lower bound in (9) is essentially more
sophisticated than (5) due to the additional information
available at the service provider which differentiates between
the demand over daily time slots. Yet, the optimization is still
tractable as the problem is convex.

Next, similar to Theorem 2, we establish
that cF (Π(K)), achieves the delay-tolerant limit
c∗(Π(K)) = C(S

∑N
n=1 πn) if and only if demand

prediction approaches full certainty.
Theorem 6 (Unavoidable Costs of Fluctuating Uncer-

tainty): Under the fluctuating demand pattern with given
Π(K), cF (Π(K)) ≥ c∗(Π(K)), with equality if and only
if π(k)

n ∈ {0, 1} for all n, k.
Proof. Please refer to Appendix E.

In Fig. 5, we numerically compare the lower bound
cF (Π(K)) to the minimum costs achievable by reactive
and infinitely delay-tolerant schemes. In this setup, we set

4Note that
∑
J∈KQ2(J ) = 1.
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Fig. 5: Comparison of Reactive, Proactive, and Delay-
Tolerant costs under sinusoidally fluctuating demands.

N = 1, K = 12, C(L) = L4, and set π(k)
1 = π1 +

min{π1, 1− π1} sin( 2π(k−1)
K ), which idealistically captures

the peak-off-peak characteristics of the daily demand pattern
through a sinusoidal function. As the average load π1 varies
from 0 to 1, we observe from Fig. 5a that proactive costs stay
very closely to the idealized delay-tolerant limit, while the
reactive costs perform very poorly. Also, Fig. 5b illustrates
the cost of uncertainty with the same metric as in Fig. 3b.
We can clearly see from the figure that fluctuating demands
offer further gains over uniform demands since fluctuations
enable shifting of the load to less congested durations with
smaller service costs.

B. Cyclostationary Proactive Caching Policy Design &
Analysis

We start by defining a cyclostationary proactive service
policy for fluctuating demand patterns.

Definition 3 (Proactive caching policy pF ): Given the
observed requests Bt = {n ∈ N : Rn,t = 1} in slot t,
our proactive caching policy pF selects its proactive service
amounts as:
un,t(τ) = µn(Bt,Jt,Jt+τ )

T , for each τ ∈ {1, · · · , T} where
{µn(B, I,J )}B,I,J is the unique solution to (9).

Here, we note that policy pF does not only assign proac-
tive services based on the current realization of user requests
Bt, but also it incorporates the statistical information about
the current demand Jt, as well as future demand Jt+τ ,
τ = 1, · · · , T , in its decisions so as to maximally utilize
the available resources at minimum cost. Clearly, the policy
is cyclostationary with period T since Jt = Jt+mT for any
positive integer m. In the following theorem we establish
the asymptotic optimality of pF .

Theorem 7 (Asymptotic Optimality): Under the fluctuating
demand pattern described by Π(K), our proactive caching
policy pF is asymptotically optimal (cf. Definition 1), there-
fore it achieves cF (Π(K)) as T →∞.

Proof. Under a cyclostationary policy p, the result-
ing average cost can be expressed as cpT (Π(K)) =
1
T

∑T−1
t=0 E

[
C(LPt (ut))

]
. By expanding the expectation

through conditioning on (Bt,Jt), and following similar steps
to the proof of Theorem 3, the result follows.

Hence, we can see that
∑
J∈K

∑
D⊆N Q2(J )

×P2(D|J )µn(D,J , I) is the average proactive service
received by user n at the time instants with demand
probabilities of all users form set I. Further, the term∑
J∈KQ2(J )µn(B, I,J ) captures the proactive services

assigned to user n when B is current set of requesting
users, I, is the current set of demand levels, and J is the
potential set of demand levels at which a request from user
n is expected to be realized.

As policy pF employs a processor sharing discipline
for its proactive services, similar to pU it also enjoys an
exponential converging speed with T to the ultimate lower
bound (8), as established next.

Theorem 8 (Exponential Bounds on Convergence Speed):
Let δ > 0, then there exists a function g2 > 1 such that
g2 → 1 as δ → 0 and

cpFT (Π(K))− cPT (Π(K)) ≤ δM + 2NMg2(δ)−T ,

for some positive constant M .
In Fig. 6, we explicitly plot the achieved time average

cost against the prediction window size T under fluctuating
demand pattern with characteristics specified as follows.
There are N = 15 users in the system who request services
from a random fashion. The day to be divided into K = 24
hours with the average probability of demand for each user
n varies over the course of the day according to (0.73,
0.73, 0.73, 0.78, 0.73, 0.73, 0.78, 0.86, 0.90, 0.90, 0.78,
0.67, 0.49, 0.31, 0.31, 0.2, 0.2, 0.2, 0.36, 0.43, 0.54, 0.54,
0.67, 0.67). Here, the first element π(1)

n = 0.73 corresponds
to the time period (00 am, 1 am], and the last element
π(24) = 0.67 corresponds to the period (11 pm, 00 am].
Thus, πn = 1

K

∑K
k=1 π

(k)
n = 0.5933, ∀n. We adopt T as the

number of daily time slots. Thus, in the simulation, T = 288
corresponds to a slot size of 5 minutes which is reasonable
for a user to generate one data request.

To further highlight the impact of the proposed policy pF
on the system’s load under different values of T , we

In Fig. 7, we show the daily average load levels achieved
by both reactive and proactive caching, including two in-
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Fig. 6: Impact of proactive window size on achievable cost
of policy pF for fluctuating demand.
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Fig. 7: Average load levels under reactive and proactive
services for fluctuating demands.

stances of T in addition to the asymptotically optimal
limit. Clearly, as T grows, load levels become smoother
over time, and at T = 288 (corresponding to a time slot
size of 5 minutes) the proactive cost is indistinguishable
from the asymptotic optimal. We also observe that proactive
caching considerably smooths out the load over time, while
uncertainty still yields some minor fluctuations that cannot
be avoided according to Theorem 5. Here we note that
different service providers can divide the day into different
number of time slots T . For instance, Netflix may operate
at T = 24 slots with slot duration being an hour as it serves
movies with long duration. CNN, on the other hand, can
divide the day into larger number of time slots, e.g., T = 288
slots since its videos are shorter.

Remark 2 (Complexity of pF ): Similar to policy pU ,
optimization (9) needs to only be solved once, off-line,
based on long-term characteristics Π(K). Then, in the on-
line operation, mapping µn(Bt,Jt,Jt+τ ) is harnessed to
assign proactive control un,t(τ). The complexity of de-
termining proactive controls under pF in any time slot
is O(N + logH)5, where H =

∑
J∈K 1{Q2(J )}, and

1{x} = 1, if x > 0 and 1{x} = 0 otherwise.
Remark 3 (Memory consumption): To enable proactive

5It is also possible to develop efficient low-complexity solutions to (6)
and (9) with high performance guarantees. Nevertheless, this is not the main
focus of this work and hence can be addressed separately.

caching at end users, there is an amount
∑T
τ=1 un,t(τ)

of data cached on device every time slot t. On the other
hand, an amount

∑T
τ=1 un,t−τ (τ) of previously applied

proactive service becomes irrelevant at the end of time
slot t and thus can be overwritten. As a result, dynamic
memory allocation for proactive service of user n is given
by
∑T
i=1

∑T
τ=i un,t−i+1(τ). Proactive downloads are also

chosen to decrease linearly as the size of the set of requesting
users |B| grows.

In the light of Remark 3, expected memory us-
age per slot under policy pU for uniform demand
is given by T+1

2

∑
B⊆N P1(B)µn(B). Further, expected

memory usage under policy pF for fluctuating de-
mand is upper bounded by T+1

2 An, where An :=
maxI∈K

∑
J∈K

∑
D⊆N Q2(J )P2(D|J )µn(D,J , I).

It is clear that memory requirements grow with prediction
window size. Nevertheless, the exponential convergence of
operational cost to the established lower bounds (see Theo-
rems 4, 8) suggests moderate values of T will yield a best
balance between memory allocation and operational cost. In
addition, for fair comparison with delay tolerant networks,
we note that despite such memory allocation requirements,
proactive caching does not suffer any service delays and
hence enhances quality of experience.

In the numerical simulations above, we have noted that
choice of T = 288 slots corresponds to slot size of 5
minutes. Now, for this case, the upper bound on memory
allocation under fluctuating demand is 50S. An average
5-minute YouTube video has a size of ∼ 10 MB. Thus,
memory allocation for proactive caching in such case will
be less than 0.5 GB. As recent versions of smartphones
support large storage (e.g., 128 GB), it is clear that memory
requirements for proactive service are well-satisfied.

Remark 4 (Memory constraints): From the above discus-
sion, expected memory consumption at every time slot for
user n can be expressed as an affine expression of {µn(B)}B
for uniform demand, and {µnB, I,J }B,I,J for fluctuating
demand. In case that users pose memory constraints on
proactive service, lower bound optimizations (6), (9) can
be modified to include such new affine constraints, where
convexity is preserved. However, the lower bound will be
dependent on proactive window size T , that is, for each
value of T , we have a lower bound on minimum achievable
cost. Nevertheless, our proposed policies pU , pF are still
valid and can be applied to smooth out traffic over time.

V. MORE NUMERICAL RESULTS

In this section we provide additional numerical results to
reap further insights on the performance of the proposed
proactive caching policies.

A. Time-domain Performance

Following the exact simulation setup used in Figs. 3, 4,
we plot in Fig. 8 the evolution of relative cost reduction gain
with time for both models of uniform and fluctuating demand
patterns through the use of policies pU , pF , respectively.



10

0 2 4 6 8 10

x 10
4

0

10

20

30

40

50

60

70

Time (t)

P
e

rc
e

n
ta

g
e

 c
o

s
t 

re
d

u
c

ti
o

n
 (

%
)

 

 

Asymptotically optimal

T=24 slots

T=96 slots

T=288 slots

(a) Policy pU for uniform demand.

0 2 4 6 8 10

x 10
4

30

35

40

45

50

55

60

65

70

Time (t)

P
e

rc
e

n
ta

g
e

 c
o

s
t 

re
d

u
c

ti
o

n
 (

%
)

 

 

Asymptotically optimal

T= 24 slots

T=96 slots

T=288 slots

(b) Policy pF for fluctuating demand.

Fig. 8: Convergence of relative cost reduction with time.

For both models of uniform and fluctuating demand,
increasing T enhances the attainable cost reduction gain until
approaches the respective upper-bound obtained as T grows.
We also note that, the worst case prediction under uniform
demand, resulting from identically distributed requests over
time, essentially limits the system gains due to significant
uncertainty. However, for fluctuating demand, the system is
able to attain remarkably higher gains by exploiting the time
variability of demand levels.

B. Impact of Number of Users

We study the impact of the number of users on the
system’s performance for both models of demand patterns
(uniform and fluctuating) in Fig. 9. In particular, we plot
the asymptotically optimal cost reduction gain against the
number of users N , We also consider the asymptotic perfor-
mance of a DTN with full certainty about generated requests.
We can see that performance of uniform demand (Fig. 9a)
considerably falls with N , even for the DTN with full
certainty. The reason is that the increased randomness of the
system because of more users, together with the statistically
indistinguishable requests, limit the opportunities of shifting
the demand over time. On the other hand, fluctuating demand
attains considerably higher gains (although non-increasing
with N ) by leveraging major caching opportunities offered
in off-peak hours. Here we note that, the comparison above
does not show the significant user dissatisfaction associated
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(b) Policy pF for fluctuating demand.

Fig. 9: Impact of the number of users N on achievable cost.
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Fig. 10: Relative cost reduction gain vs π1 for uniform
demand.

with the DTN due to large delays, which is completely
resolved via proactive caching.

C. Certainty-Cost Reduction Tradeoff

Finally, in Fig. 10, we highlight the tradeoff between
uncertainty and relative cost reduction gain for the simple
example of N = 1 user addressed in Section III. Since the
cost function is polynomial with degree d = 4, it is clear
that π1 = 1/4 is the optimal value of π1 that strikes the
best balance between certainty, and enough opportunities
for load shift over time. The DTN counterpart, on the other
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hand, attains a monotonically decreasing gain with π1 since
it does not suffer any uncertainty issues, only increasing π1

decreases the opportunity for exploiting empty slots for load
balancing.

VI. CONCLUSIONS

In this work we have considered the notion of proactive
caching of delay-intolerant data services in the presence of
uncertain predictions of future user demands. We consider
service providers that utilize the statistically predictable na-
ture of future user demands to selectively serve data requests
before their actual time of realization. We revealed that by
harnessing time instants with low demand characteristics,
service providers can leverage significant cost reduction
through proactive service of future requests. Despite the
ultimate challenge of uncertainty about future requests, con-
siderably lower service costs have been proven achievable
via proactive caching in large time scale systems where delay
tolerance is essentially limited. We have studied interesting
instances of predictable demand, established fundamental
lower bounds on the achievable costs through proactive
caching, and developed asymptotically optimal policies that
attain these bounds rapidly as the proactive caching window
size increases. Further, we have contrasted the asymptoti-
cally optimal performance with that of infinitely deferrable
ideal scenario, and drawn interesting insights and remarks
on the unavoidable costs of prediction uncertainties.

APPENDIX A
PROOF OF THEOREM 1

Let {u∗t }t be an optimal proactive caching policy under
the uniform demand model, where u∗t = [u∗n,t(τ)]n,τ . Thus,
we can write

cPT (π) = lim sup
t→∞

1

t

t−1∑
l=0

E
[
C
(
LPl (ul)

)]
.

By conditioning on all possible sets of requesting users at
time l ≥ 0, we can rewrite this as

cPT (π) = lim sup
t→∞

1

t

t−1∑
l=1

∑
B⊆N

P (Bl = B)E
[
C
(
LPl (ul)

)
|Bl = B

]
.

By Jensen’s inequality, since C is assumed strictly convex,
we have

cPT (π) ≥ lim sup
t→∞

1

t

t−1∑
l=1

∑
B⊆N

P1(B)×

C

(∑
n∈B

(
S−

T∑
τ=1

E[u∗n,l−τ (τ)]

)
+

N∑
n=1

( T∑
τ=1

E[u∗n,l(τ)|B]

))
.

Note that {Bl}l is an i.i.d. sequence under the uniform
demand pattern, thus we could use P1(B). Moreover, Bl
is independent of

∑T
τ=1 u

∗
n,l−τ (τ), l ≥ 0.

Since 1
t

∑t−1
l=0 1 = 1, we can apply Jensen’s inequality

again to have

cPT (π) ≥
∑
B⊆N

P1(B)C

(∑
n∈B

(
S−lim inf

t→∞

1

t

t−1∑
l=1

T∑
τ=1

E[u∗n,l−τ (τ)]

)

+

N∑
n=1

(
lim sup
t→∞

1

t

t−1∑
l=1

T∑
τ=1

E[u∗n,l(τ)|B]

))
.

As C is monotonically increasing, we can replace
lim sup on the right-hand-side of the last expression
by lim inf . Further, by defining µ̃n(B) := lim inft→∞
1
t

∑t−1
l=0

∑T
τ=1 E[u∗n,l(τ)|B], we obtain

cPT (π) ≥
∑
B⊆N

P1(B)C

(∑
n∈B

(
S −

∑
D⊆N

P1(D)µ̃n(D)

)

+

N∑
n=1

(
µ̃n(B)

))
.

Note that Constraints (2), (3), imply that 0 ≤ µ̃n(B) ≤
S, ∀n,B. Now, by minimizing the right-hand-side of the
last expression over all feasible choices of {µ̃n(B)}B, the
theorem is proved.

APPENDIX B
PROOF OF THEOREM 3

It suffices to prove that lim supT→∞ cpUT (π) =
lim infT→∞ cPT (π). We start by lim supT→∞ cpUT (π). Since
pU is a stationary policy that depends only on the current
demand realization, we can write

cpUT (π) = E

[
C

(
N∑
n=1

(
S −

T−1∑
τ=1

un,t−τ (τ)

)
Rn,t +

T∑
τ=1

un,t(τ)

)]

=
∑
B⊆N

P1(B)E

[
C

(∑
n∈B

(
S −

T∑
τ=1

un,t−τ (τ)

)

+

N∑
n=1

µn(B)

)
|Bt = B

]
Now, we consider the sum

∑T
τ=1 un,t−τ (τ), which is inde-

pendent of Bt. Define a counter ZT (D) which measures
the number of occurrences of a requesting set of users
D ⊆ N in slots t− T, · · · , t− 1. Then,

∑T
τ=1 un,t−τ (τ) =∑

D⊆N
µn(D)ZT (D)

T . Thus, by the strong law of large num-
bers, as T →∞

lim sup
T→∞

∑
D⊆N

µn(D)ZT (D)

T
=
∑
D⊆N

µn(D)P1(D), w.p. 1.

By noting that the system load LPt (ut) ≤ 2NS, bounded
convergence theorem implies

lim sup
T→∞

cpUT (π) =
∑
B⊆N

P1(B)×

C

∑
n∈B

S − ∑
D⊆N

P1(D)µn(D)

+

N∑
n=1

µn(B)

 . (10)

Second, by noting that the RHS of (10) is identical to cU (π),
then lim supT→∞ cpUT (π) ≤ lim infT→∞ cPT (π). Yet, by the
definition of cPT (π) it follows that lim supT→∞ cpUT (π) =
lim infT→∞ cPT (π), which completes the proof.
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APPENDIX C
PROOF OF THEOREM 4

Let YD := 1
T

∑T
τ=1 1{Dt−τ=D}, where 1A is the indicator

function of event A. We have

P (|YD − P1(D)| > δ) = P (YD > P1(D) + δ)

+ P (YD < P1(D)− δ) .

From Chernoff bound, we can write

P (YD > P1(D) + δ) ≤ inf
r>0

eT (Λ(r)−r(P1(D)+δ)),

where Λ(r) is the log moment generating function of
1{Dt=D}, which is a Bernoulli random variable with param-
eter P1(D). Hence, the tightest Chernoff bound is attained
at r∗ = log(1 + δ

P1(D)(1−P1(D)−δ) ), which yields

P (YD > P1(D) + δ) ≤ hD(δ)−T , δ > 0, (11)

hD(δ) =

(
1 + δ

P1(D)(1−P1(D)−δ)

)(P1(D)+δ)

1 + δ
1−P1(D)−δ

.

Note that hD(δ) > 1, δ > 0. Similarly, we can show that

P (YD < P1(D)− δ) ≤ hD(−δ)−T , δ ∈ (0, P1(D)). (12)

Note also that hD(−δ) > 1 on δ ∈ (0, P1(D)).
Now, we define Aδ := {YD : |YD − P1(D)| ≤ δ}, thus

we can expand and bound cpUT (π) as

cpUT (π) =
∑
B⊆N

P1(B)
{
P (YD ∈ Aδ, ∀D)×

E
[
C
(∑
n∈B

S −
∑
D⊆N

YDµn(D) +
∑
n

µn(B)
)∣∣∣YD ∈ Aδ,∀D]

+P (YD′ /∈ Aδ for some D′))× E
[
C
(∑
n∈B

S −
∑
D⊆N

YDµn(D)

+
∑
n

µn(B)
)∣∣∣YD′ /∈ Aδ, for some D′

]}
≤
∑
B⊆N

P1(B)(C(
∑
n∈B

S −
∑
D⊆N

(P1(D)− δ)µn(D)

+

N∑
n=1

µn(B))P (YD ∈ Aδ, ∀D)

+C(2NS)P (YD′ /∈ Aδ for some D′)).

The inequality follows since C(·) is monotonically increas-
ing, YD = P1(D) − δ is the value of YD ∈ Aδ that
maximizes the conditioned cost on YD ∈ Aδ , and 2NS
is the largest load the service provider can sustain under the
constraints on {µn(B)}n,B.

The difference cpUT (π)− cPT (π) can be upper-bounded by

∑
B⊆N

P1(B)

((
C

(∑
n∈B

S −
∑
D⊆N

(P1(D)− δ)µn(D)

+

N∑
n=1

µn(B)

)
− C

(∑
n∈B

S −
∑
D⊆N

P1(D)µn(D)

+

N∑
n=1

µn(B)

))
P (YD ∈ Aδ,∀D)

+

(
C(2NS)− C

(∑
n∈B

S −
∑
D⊆N

P1(D)µn(D)

+

N∑
n=1

µn(B)

))
P (YD′ /∈ Aδ for some D′)

)
(a)

≤ δSC′(2NS) + SC′(2NS)P (YD′ /∈ Aδ for some D′)
(b)

≤ δM +M2N max
D′⊆N

P (|YD′ − P1(D′)| > δ)

(c)

≤ δM +M2N max
D′⊆N

hD′(−δ)−T + hD′(δ)
−T ,

where C ′(·) is the first derivative of C(·), and M =
SC ′(2NS). Inequality (a) follows by mean value theo-
rem and monotonicity6 of C ′(·) since C(X) − C(Y ) ≤
C ′(X)(X−Y ). Also, P (YD ∈ Aδ,∀D) ≤ 1. Inequality (b)
follows from upper-bounding P (YD′ /∈ Aδ, for some D′)
by 2N maxD′⊆N P (|YD′ − P1(D)| > δ), which by (11),
(12) leads to inequality (c). Now, by setting g1(δ) =
maxD′⊆N 2 min{hD′(δ), hD′(−δ)}, the proof is completed.

APPENDIX D
PROOF OF LEMMA 1

We have by Jensen’s inequality

cPT ≥ min
{ul}l

lim sup
t→∞

E

[
C

(
1

t

t−1∑
l=0

LPl (ul)

)]
.

Note that, C is a strictly convex by hypothesis, and the
expectation operator preserves convexity. We can write

t−1∑
l=0

LPl (ul) = S

t−1∑
l=0

N∑
n=1

Rn,t+

t−1∑
l=0

N∑
n=1

T∑
τ=1

un,l(τ)−
t−1∑
l=0

N∑
n=1

T∑
τ=1

un,l−τ (τ)Rn,l. (13)

Further, since C is monotonically increasing, we have

cPT ≥ lim sup
t→∞

E

[
C

(
1

t

t−1∑
l=0

S

N∑
n=1

Rn,l +G1(t)−G2(t)

)]
(a)

≥ E

[
C

(
S

N∑
n=1

lim inf
t→∞

1

t

t−1∑
l=0

Rn,l +G1(t)−G2(t)

)]
(b)
= c∗.

6The cost function C(·) is strictly convex and increasing thus has a
positive and monotonically increasing derivative C′(·).
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In (a), we used Fatou’s lemma to replace lim sup outside the
expectation with lim inf inside it. In (b), we used the fact
that G1(t) ≥ G2(t) for any t ≥ 0. Hence, if equality holds,
then lim inf G1(t)−G2(t) = 0 w.p. 1.

APPENDIX E
PROOF OF THEOREM 6

(⇒) WLOG, we assume that N is the set of users n
with π(k)

n ∈ {0, 1}, ∀k, and πn /∈ {0, 1}. Clearly, in case of
πn ∈ {0, 1} it is optimal to have zero proactive service for
such traffic. Now, we have

P2(B|I) =


1, if ∀(n, π(k)

n ) : n ∈ B, π(k)
n ∈ I, π(k)

n = 1,

∀(n, π(k)
n ) : n /∈ B, π(k)

n ∈ I, π(k)
n = 0,

0, otherwise.

Thus, Jt carries all information about Bt, and therefore we
can omit the dependence on Bt from the rest of the proof.
Hence, we can write the general lower bound for M2 as

∑
I∈K

Q2(I)C

( ∑
n:π(k)n∈I,π(k)

n =1

(
S −

∑
J∈K

Q2(J )µn(J , I)

)

+

N∑
n=1

∑
J∈K

Q2(J )µn(I,J )

)
(14)

Choosing µn(I,J ) = S if π(k)
n ∈ I, π(k)

n = 0, and π(m)
n ∈

J , with π
(m)
n = 1. Further, set µn(I,J ) = 0 otherwise.

Then, expression (14) reduces to

C

( N∑
n=1

Sπn

)
= c∗.

Note that,
∑
I∈KQ2(I) = 1,

∑
J∈KQ2(J )µm(I,J )

= πnS if π
(k)
n ∈ I, and π

(k)
n = 0 for some k,∑

J∈KQ2(J )µm(I,J ) = 0 otherwise.
(⇐) Suppose cF (πK) = c∗. Then, by the convexity of

C, we have

∑
I∈K

∑
B⊆N

(∑
n∈B

(
S−

∑
J∈K

∑
D⊆N

Q2(J )P2(D|J )µn(D,J , I)

)

+

N∑
n=1

∑
J∈K

Q2(J )µn(B, I,J )

)
Q2(I)P2(B|I) =

N∑
n=1

Sπn.

Now, suppose towards contradiction that π(k0)
n0 ∈ (0, 1) for

some n0 ∈ N , k0 ∈ {1, · · · ,K}. Consequently, for any J
such that π(k0)

n0 ∈ J , P2(D|J ) ∈ (0, 1), ∀D ⊆ N .
Since ∑

I∈K

∑
B⊆N

∑
n∈B

SQ2(I)P2(B|I) =

N∑
n=1

Sπn,

then we must have

∑
I∈K

∑
B⊆N

Q2(I)P2(B|I)

N∑
n=1

∑
J∈K

Q2(J )µn(B, I,J ) =
∑
I∈K∑

B⊆N

Q2(I)P2(B|I)
∑
n∈B

∑
J∈K

∑
D⊆N

Q2(J )P2(D|J )µn(D,J , I).

By rearranging terms, the last equality can be written as

∑
I∈K

∑
B⊆N

Q2(I)P2(B|I)

N∑
n=1

∑
J∈K

Q2(J )µn(B, I,J ) =
∑
I∈K∑

B⊆N

Q2(I)P2(B|I)

N∑
n=1

∑
J∈K

Q2(J )µn(B, I,J )
∑

D⊆N :n∈D

P2(D|J ).

Yet, by hypothesis we have
∑
J∈K

∑
D⊆N :n0∈D

P2(D|J )Q2(J ) < 1, which essentially contradicts the
fulfillment of the above inequality. Note that,

∑
D:n0 /∈D

P2(D|J )Q2(J ) > 0 since π(k0)
n0 ∈ (0, 1).
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