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Outline

 Introduction

 Theory

 Optimization-based modeling of resource allocation 

problems in general wireless networks

 Systematic development of architectures and algorithms 

using dual decomposition techniques

 Applications

 Modeling and Solution Methods for Resource Allocation 

in Wireless Networks

 Efficient Architecture and Algorithm Design for

 Long-Term Fairness (or Network Utility)

 Intersession Network Coding amongst flows
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Multihop wireless networks

 Wireless Communication is subject to

 Variations in the channel quality (a.k.a. – Fading)

 Interference from other transmissions

 Limited resources – power, time, bandwidth, etc.

 Different types of traffic sharing the wireless network:

 Unicast (single destination) and multicast (multiple 

destinations)

 Short flows and long flows

 Elastic (controllable rate) and Inelastic (fixed rate)

 Real-time (with delay & jitter requirements) and non-real-time

 Need: Theory and methodologies for the systematic design of 

efficient network architectures and resource allocation 

algorithms to serve these different types of flows.
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1) Flow Control & Scheduling under Fading

 Each channel state varies in time between ON and OFF states

 Only one transmission is allowed in every time slot

 Goal: to design a joint flow controller and scheduler to maximize 

the long-term network utility, subject to queue stability

Cn [t] = 1 if Channel n 

is ON at time t;    

0 otherwise

Xn [t] : Number of 

incoming User n 

packets

Sn [t] = 1 if Queue n is 

served at time t;   

0 otherwise

Qn [t] : length of Queue 

n at the beginning 

of slot t
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Measuring Long-term Utility (or Fairness)

 Let xn denote the average throughput provided to User n

 Then, Un (xn ) is a utility function that measures the long-

term satisfaction (or preferences) of User n

xn

Un (xn) 

 Un (xn) is assumed to be concave and non-decreasing (law of 

diminishing returns)

 Can measure various forms of fairness (Mo and Walrand [„99])

 Examples: xn , log(xn), -1/xn , etc.
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Understanding the Stability Region

 Suppose N=2 and p=2/3 in the 

previous setup

 What is the region of achievable 

service rates, ?

 n : Mean service rate of User n, E[Sn]

1

2

2/3

2/3

(4/9, 4/9)

Achieved 

when User 2

is always 

served.

Achieved 

when User 1

is always 

served.

Opportunistic Scheduling:

Always serve a user with 

an ON Channel

• is always 

convex, and usually 

difficult to compute.

(2/9, 2/3)
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Static Optimization Formulation of the Problem

 Static formulation of the queue stability condition:

Mean injection rate:   xn Mean service rate: n

Queue  n

Queue Stability  xn ≤ n

 We propose to solve:

 This is a static convex optimization problem with a 

separable objective function 
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Flow Controller: Given q[t] = (qn[t]), 

Choose Xn [t] to maximize this.

Scheduler: Given q[t] = (qn[t]), 

Choose Sn [t] to maximize this.

Solution through Dual Decomposition

 Let qn be the Lagrange multiplier associated with:  xn ≤ n

 Then, the Lagrangian function becomes

 Hence, the Dual Function is

 Then, update q[t] in the direction of decreasing D(q[t]).
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Flow Controller and Scheduling Algorithm 

 It turns out that qn[t] ¼ Qn [t] for a design parameter > 0

 This suggests the following Flow Control and Scheduling 

Algorithm for the original stochastic system:

Flow Controller: The mean number of packets User n injects at slot t are:

Scheduler: At slot t, assign services Sn [t] 2 {0,1} such that 

Queue Evolution: Update the queues

10



Example Scenario

 Suppose Un (xn) = log(xn)

 Then

 E[Xn[t]] = 1/( Qn[t]), i.e., discouraged arrivals

 Serve the user the Longest Connected Queue (LCQ) [Tassiulas, 

Ephremides`93]

 A useful functional visualization is

Q t]

Queue

Length

Information

price weight

arrival service

Flow Control 

(User-n )
Scheduling

(Base Station)

 This structure of critical information sharing through a pricing/ 

queueing mechanism appears repeatedly in allocation problems.
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Optimality of the Stochastic Algorithm 

Proof (Outline) [E., Srikant „05]: {(Q[t])}t forms an irreducible, aperiodic

Markov Chain

Foster – Lyapunov criterion : Suppose Markov Chain Q[t] is irreducible and 

aperiodic. Let V(Q) be a function such that V(Q)¸ 0 8 q and

There exists a finite set S such that, 

for V(Q[t]) := V(Q[t+1])-V(Q[t])

(i) E[ V(Q[t]) | Q[t]] · - for Q[t] 2 Sc

(ii) E[ V(Q[t]) | Q[t]] · M for Q[t] 2 S 

Then, the Markov Chain is positive recurrent (stable). 

In our case, the typical Lyapunov function is

where q* is an optimal Lagrange multiplier of the    

static optimization problem .
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User 0

User 1

User 2

cA=1
cB=1

a0 is the fraction of

time link A is used for

user 0

Either link A or 

link B can be 

active, but not 

both.

subject to

2) Flow Control & Scheduling in Multi-hop Wireless Networks
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Lagrange Multipliers

subject to
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Lagrangian Decomposition

Congestion control:

User 0:

User 1:

…

MAC or Scheduling:

Solution is an 

extreme point!
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Resource Constraints and Queue Dynamics

subject to

• Lagrange multipliers 

≈ Queue lengths

• Arrival rate into a 

queue is departure rate 

from previous queue
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3) Joint Flow Control, Scheduling and Routing

time

Slot 1 Slot 2

flow f

flow h

flow g

Mean Rate:

xf

Flow Control

Routing

Scheduling
b( f )

e( f )

Uf  ( · ) is a concave, non-decreasing function that measures 

the utility of Flow-f as a function of its mean rate
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i

j

Flow Control

Routing

Scheduling

S(i,j) {0,1}

 S : Set of  feasible link activation vectors (or feasible schedules)

 Schedule of slot t, denoted S t = (S(i,j)[t])(i,j) L , must be in S t

 = Convex Hull{S }:  Achievable mean link rates

 A scheduling policy P is a mapping from the current “state” of the 
system to feasible schedules

 Let P denote the set of all scheduling policies

Joint Flow Control, Scheduling and Routing
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Example on - Primary Interference

 In general is a complex set of 

rate allocations that depends on the 

topology and interference model

µbµa µc

Primary interference model: 

Any two active links must 

be separated by ≥1 link

µa

µc

µb

1

1

1 Kth order interference model: 

Any two active links must be 

separated by ≥  K links

: Stars
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Definitions

 A queue, say qi
d, is stable if

 A queue-length based flow control policy
X : q  [0, M] |F| is a mapping from queue-lengths 
to feasible rates

 Let X denote the set of all queue-length-based flow 
control policies

 Then, the queue-length evolution for a given 
scheduling policy P, can be written as

for some function h
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Translation of to 

 x = ( xb(f) )f ¸ 0 2 iff 

 there exists a 2 for which we have:

 Our goal can then be posed as

e(f)

Set of FlowsAchievable mean

link rates

Network 

Stability Region

(Flow Conservation Constraints)
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Then the Dual Problem is given as:

A Dual function associated with the previous problem is

where we i
d can be interpreted as the price associated with 

sending a unit rate of flow from node i to node d.

Dual Decomposition

Fact: There is no duality gap and there exists a nonempty set *
such that: 

Distributed

Flow Control

Backpressure

Scheduler/Router

 Implied architecture: Qi
d [t] for packets at node i, destined to d
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Sub-gradient Methods to Solve NUM

 Employ Dual (or Primal-Dual) Methods:

where > 0 is the step-size.

 Then, using results from optimization theory, we have, 

under appropriate step-size rules,

q[t] *, and x[t] x*

Ingress Queue length

20 60 80 20
Weights =

Back-pressures

-40 -20 60
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A Summary of the Design Methodology

Wireless Network 

Model

Stochastic Network 

Optimal Control Pr.

[Dynamic]

Static 

Optimization

Problem

Iterative 

Methods

[Dynamic]

Lagrange

Multipliers

Queue

lengths

Queue 

Evolutions

Duality Theory/

Dual Methods

Flow Control,

Routing,

Scheduling, etc.

 This gives a systematic approach to developing 
architectures and algorithms for stochastic wireless 
networks

Proper 

scaling
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4) Architecture and Algorithm for Intersession Network Coding

 Data Communications convey information

 information = bits and bits can be added, subtracted,…

 IDEA: exploit the algebraic nature of information to 

increase utilization of network resources

Data

Network

P1P2
…

bm b1
(bi 2 {0,1})…
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Foundation of Network Coding – Single Session

…

c01 c02

c13 c23

c15 c26c34

c45 c46

• Network with a single multicast:

(0) ( 5, 6 )

• Constant link rates:    

ci,j = 1 packet/slot,  8 i,j.
21

3

5 6

4

0

R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, "Network Information Flow", IEEE Transactions 

on Information Theory, IT-46, pp. 1204-1216, 2000
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Foundation of Network Coding – Single Session

P1P2

… • Network with a single multicast:

(0) ( 5, 6 )

• Constant link rates:    

ci,j = 1 packet/slot,  8 i,j.
21

3

5 6

4

0
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Foundation of Network Coding – Single Session

…

P2P1

• Network with a single multicast:

(0) ( 5, 6 )

• Constant link rates:    

ci,j = 1 packet/slot,  8 i,j.
21

3

5 6

4

0
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Foundation of Network Coding – Single Session

…

P2

P2P1

P1

• Network with a single multicast:

(0) ( 5, 6 )

• Constant link rates:    

ci,j = 1 packet/slot,  8 i,j.
21

3

5 6

4

0
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Foundation of Network Coding – Single Session

…

P2

P2P1

• If only Routing is allowed…

P1

• Network with a single multicast:

(0) ( 5, 6 )

• Constant link rates:    

ci,j = 1 packet/slot,  8 i,j.
21

3

5 6

4

0
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Foundation of Network Coding – Single Session

…

P1

P2 P1

P2

• If only Routing is allowed…

• Network with a single multicast:

(0) ( 5, 6 )

• Constant link rates:    

ci,j = 1 packet/slot,  8 i,j.
21

3

5 6

4

0
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Foundation of Network Coding – Single Session

…

P1

P2

P1

P2

• If only Routing is allowed…

• Network with a single multicast:

(0) ( 5, 6 )

• Constant link rates:    

ci,j = 1 packet/slot,  8 i,j.
21

3

5 6

4

0
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Foundation of Network Coding – Single Session

…

• If only Routing is allowed…

• Network with a single multicast:

(0) ( 5, 6 )

• Constant link rates:    

ci,j = 1 packet/slot,  8 i,j.
21

3

5 6

4

0
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Foundation of Network Coding – Single Session

…

• Each receiver gets 

1.5 packets per slot.

• Link (3,4) is the bottleneck

• If only Routing is allowed…

• Network with a single multicast:

(0) ( 5, 6 )

• Constant link rates:    

ci,j = 1 packet/slot,  8 i,j.
21

3

5 6

4

0
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Foundation of Network Coding – Single Session

P1P2

… • Network with a single multicast:

(0) ( 5, 6 )

• Constant link rates:    

ci,j = 1 packet/slot,  8 i,j.
21

3

5 6

4

0

35



Foundation of Network Coding – Single Session

…

P2P1

• If Coding is allowed…

• Network with a single multicast:

(0) ( 5, 6 )

• Constant link rates:    

ci,j = 1 packet/slot,  8 i,j.
21

3

5 6

4

0
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P1P1 P2

Foundation of Network Coding – Single Session

…

P2

P2P1

• If Coding is allowed…

• Network with a single multicast:

(0) ( 5, 6 )

• Constant link rates:    

ci,j = 1 packet/slot,  8 i,j.
21

3

5 6

4

0
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Foundation of Network Coding – Single Session

…

P2P1
P1 P2

• If Coding is allowed…

• Network with a single multicast:

(0) ( 5, 6 )

• Constant link rates:    

ci,j = 1 packet/slot,  8 i,j.
21

3

5 6

4

0
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Foundation of Network Coding – Single Session

…

P2P1

P1 P2
P1 P2P2
P1

• If Coding is allowed…

• Network with a single multicast:

(0) ( 5, 6 )

• Constant link rates:    

ci,j = 1 packet/slot,  8 i,j.
21

3

5 6

4

0
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Foundation of Network Coding – Single Session

…

• Each receiver gets 

2 packets per slot.

• Link (3,4) is no longer the 

bottleneck.

• If Coding is allowed…

• Network with a single multicast:

(0) ( 5, 6 )

• Constant link rates:    

ci,j = 1 packet/slot,  8 i,j.
21

3

5 6

4

0

40



 By allowing algebraic mixing of packets, network coding 
can increase the session throughput

 [Ahlswede et al. (IT `00)] proved that for a single multicast 
session, network coding achieves the maximum possible 
rate allowed in the network

 [Koetter and Médard (ToN `03)] put network coding in a 
beautiful algebraic framework

 Nice random/deterministic algorithms exist for serving a 
single multicast session [Ho et al. (Thesis `04), Jaggi et al. 
(IT `05)]

 Linear network coding is sufficient to achieve maximum 
rate for a single multicast [Li et al. (IT `03)]

Background 

ALL FOR A SINGLE SESSION NETWORK CODING !!
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Network Coding – Multiple Sessions

 If multiple sessions exist in the network, should we 

always code across sessions? 

[ X1 ]

[ X1 ] [ X2 ]

[ X2 ]

• (1) (6)

• (2) (5)
21

3

5 6

4

• c15 = c26 = 0
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Network Coding – Multiple Sessions

 If multiple sessions exist in the network, should we 

always code across sessions? 

• (1) (6)

• (2) (5)

P1 B1

……

21

3

5 6

4

• c15 = c26 = 0
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P1 B1P1 B1

Network Coding – Multiple Sessions

 If multiple sessions exist in the network, should we 

always code across sessions? 

• (1) (6)

• (2) (5)
21

3

5 6

4

P1 B1

P1 B1

P1 B1

……

Achieved rate = ZERO !

• c15 = c26 = 0
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P1 B1

……

21

3

5 6

4

• (1) (6)

• (2) (5)

• c15 = c26 = 1

 Should we never code across sessions?

Network Coding – Multiple Sessions
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P1 B1

……

21

3

5 6

4

 Should we never code across sessions? 

P1 B1P1 B1

P1 B1

P1 B1

P1 B1

• (1) (6)

• (2) (5)

• c15 = c26 = 1

Achieved rate = 

1 packet/slot/session

Network Coding – Multiple Sessions
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Illustration of Gains for the Butterfly

21

3

5 6

4

[ X1 ]

[ X1 ] [ X2 ]

[ X2 ]

• (1) (6) & (2) (5)

1 2

1

2

1

1

Intersession

Network

Coding

Intrasession

Network

Coding

• cij = 1 for all (i, j).
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Goal

 We aim to

 develop practical methods for making intersession 

coding decisions for general stochastic networks with 

unknown topology or statistics

 guarantee provably good performance

Multiple sessions must co-exist

 Considerable throughput gains can be achieved through 

coding across sessions [Katabi et al. (Allerton `05)]
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Intersession Network Coding - Challenges

 The topology of the network is not known

 The link quality fluctuates with an unknown 

mean

 Session arrivals are unknown and stochastic

 The problem of intersession coding is difficult 

to solve even for a genie that has all the 

information about the network and sessions!!

 The capacity region is inter-session coding is 

not known
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P1 B1

Observation – Effect of Coding

21

3

5 6

4

P1 B1

P1 B1

• (1) (6)

• (2) (5)

R
em

ed
y

 (
1

5
)

R
em

ed
y

 (2
6
)

P1 B1

P1

P1 B1

B1

P1 B1

• Coding at (3) creates:

- One Poisoned Multicast

(3) (5, 6)

- Two Remedy Unicasts

(1) (5)

(2) (6)
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Queueing Architecture

21

3

5 6

4

qc
45 qc

46

q15 q26

1 2

q16 q25

q36 q35

q45 q46

P1 B1

• qij holds packets for node j

at node i.

• qc holds coded packets.

• Need queues for remedy

packets.

• (1) (6)

• (2) (5)
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21

3

5 6

4

qc
45 qc

46

q15 q26

1 2

q16 q25

q36 q35

q45 q46

P2 B2

P1 B1
• ROUTING ONLY!

• (1) (6)

• (2) (5)

Queue Evolution
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21

3

5 6

4

qc
45 qc

46

q15 q26

1 2

q16 q25

q36 q35

q45 q46

P3

B2

P2 B1
• ROUTING ONLY!

P1

B3

• (1) (6)

• (2) (5)

Queue Evolution
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21

3

5 6

4

qc
45 qc

46

q15 q26

1 2

q16 q25

q36 q35

q45 q46

P4

B2P2

B1

• ROUTING ONLY!

P1

B4

B3P3

• (1) (6)

• (2) (5)

Queue Evolution

54



21

3

5 6

4

qc
45 qc

46

q15 q26

1 2

q16 q25

q36 q35

q45 q46

P5

B2P3

B1

• ROUTING ONLY!

P1

B5

B3P4

P2

B4

• (1) (6)

• (2) (5)

Queue Evolution
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21

3

5 6

4

qc
45 qc

46

q15 q26

1 2

q16 q25

q36 q35

q45 q46

P2 B2

P1 B1
• CODING ONLY!

• (1) (6)

• (2) (5)

Queue Evolution
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21

3

5 6

4

qc
45 qc

46

q15 q26

1 2

q16 q25

q36 q35

q45 q46

P3 B3

P2 B2
• CODING ONLY!

P
1

B
1

P
1

B
1

P1 B1

• (1) (6)

• (2) (5)

Queue Evolution
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21

3

5 6

4

qc
45 qc

46

q15 q26

1 2

q16 q25

q36 q35

q45 q46

P4 B4

P3 B3
• CODING ONLY!

P
2

B
2

P
2

B
2

P1

P1 B1

B1

P1 B1

P2 B2

• (1) (6)

• (2) (5)

Queue Evolution
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q36

Dynamic Algorithm Description

21

3

5 6

4

qc
45 qc

46

q15 q26

1 2

q16 q25

q35

q45 q46

• In slot t, Node (3) computes:
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• In slot t, Node (3) computes:

If  1 = max { 1, 2, c, 0}

then SERVE FLOW 1.

Dynamic Algorithm Description

q36
21

3

5 6

4

qc
45 qc

46

q15 q26

1 2

q16 q25

q35

q45 q46
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• In slot t, Node (3) computes:

If  2 = max { 1, 2, c, 0}

then SERVE FLOW 2.

Dynamic Algorithm Description

q36
21

3

5 6

4

qc
45 qc

46

q15 q26

1 2

q16 q25

q35

q45 q46
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21

3

5 6

4

qc
45 qc

46

q15 q26

1 2

q16 q25

q36 q35

q45 q46

• In slot t, Node (3) computes:

If c = max { 1, 2, c, 0}

then MIX FLOWS.

Dynamic Algorithm Description
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Achieving the Capacity Region

Theorem: Our dynamic algorithm achieves any rate 

within the capacity region of the butterfly network.

Proof (Outline): {(q[t], qc[t])}t forms an irreducible, aperiodic Markov Chain

Foster – Lyapunov criterion : Suppose Markov Chain q[t] is irreducible and 

aperiodic. Let V(q) be a function such that V(q)¸ 0 8 q and

There exists a finite set S such that, for V(q[t]) := V(q[t+1])-V(q[t])

(i) E[ V(q[t]) | q[t]] · - for q[t] 2 Sc

(ii) E[ V(q[t]) | q[t]] · M for q[t] 2 S 

Then, the Markov Chain is positive recurrent (stable). 

Let to prove stability

63



Numerical Results – Butterfly Network

 As the arrival rates of the flows increase, the coding 

decision dominates the routing decisions, to achieve 

better performance 
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Results – Skeleton of the Butterfly Network

 The policy never performs coding decisions to guarantee 

decodability at the receivers

 Our dynamic policy adapts its decision dynamically to 

achieve the best throughput performance

21

3

5 6

4
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Extension to General Networks - Idea

21

3

5 6

4

a b

c d

• (a) (d)

• (b) (c)

• Idea: 

To seek butterflies of various 

sizes using our dynamic 

algorithm

TRLKM Region [Traskov et al. 

(ISIT `06)]: 

An achievable rate region with 

intersession network coding based 

on superimposing all possible 

butterflies in the network.

Theorem [E., Lun `07]: Our 

dynamic algorithm for general 

networks supports any arrival rate 

that lies within the TRLKM region. 
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Remarks

 Our algorithm

 is the first work that provides a practical algorithm for 

performing intersession coding decisions for general 

topologies

 introduces an original queueing architecture

 describes a simple decision rule for linear intersession 

coding across sessions

 unifies the class of backpressure policies

 applies to general topologies, wireless/sensor networks

 achieves the full capacity in the butterfly case

 performs provably good in general topologies
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Open Issues

68



Extending the Framework for

 Short-term optimality: include short-term Quality-

of-Service (QoS) constraints such as delay, 

overflow-probabilities etc.

 Low-complexity and Distributed Implementation: 

 Development of network algorithms in the class of 

randomized strategies with favorable qualities

 Development of dynamic strategies in the context of 

random access schedulers

 Managing Dynamics: Scalable and high-

performance network algorithms under dynamic 

network conditions

69
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Recap: Queueing and Optimization
 E h i i d b Each constraint is represented by a queue:

y ≤ x

y x

 Stability of the queue implies constraint is satisfied and 
vice-versa; resource allocation is some form of the 
M i h l i h i h l h i hMaxweight algorithm with queue lengths as weights
 Dual formulation reveals the form of the MaxWeight algorithm

 The expected queue length is proportional to the Lagrange 
multiplier for this constraint (²: step-size parameter ):

(k 1) [ (k) ( (k) (k))]+

2

q(k+1)=[q(k)+² (y(k)-a(k))]+



Typical Theorem
 J* i h i l l f h bj i f h d i i i J* is the optimal value of the objective of the deterministic 

problem

 Jst is the long-run average objective in the real system, 
which is usually stochastic (stochastic arrivals, stochastic 
channels, etc.)

 Theorem: Using the Lyapunov function  q 2 Theorem: Using the Lyapunov function l ql
2

E(Jst) ≤ J* + K²;     E(l ql)=O(1/ ² )(Jst) ≤ J ²; (l ql) O( / ² )

for some constant K

3



Issues
 All i f l d i f l All constraints formulated in terms of long-term averages

 Does this mean only long lived elastic flows can be Does this mean only long-lived elastic flows can be 
modeled using this framework?

 We will present two applications which can be modeled 
using this framework:

 Packets with deadlines: constraint in terms of lower bounds long-
run fraction of packets delivered before deadline expiry, i.e., a 
certain % of packets have to served before deadline expires

 A mixture of long-lived and short-lived flows: Short-lived flows 

4

g
bring a finite number of packets and depart when their packets are 
delivered.



Application I: Per-packet Deadlines

 Consider an ad hoc network consisting of L links

 Ti i di id d i t f f T l t h (H B k Time is divided into frames of T slots each (Hou, Borkar, 
Kumar, ‘09)

1 2 T……..

All arrivals occur here Packets not served by the 
end of the frame are lost

 QoS requirement for link l: fraction of packets lost due to 
deadline expiry has to be less than or equal to pl

5

deadline expiry has to be less than or equal to pl



Schedule for Each Frame

Time 
Slot 1

Time 
Slot 2

. . Time 
Slot TSlot 1 Slot 2 Slot T

Link 1 1
(ON)

0 0 1 1

 In each time slot, 
select a set of links 
to be ON, while 

i f i
( )

Link 2 1 0 1 0 0

0 1 0 0 1

satisfying 
interference 
constraints

. 0 
(OFF)

1 0 0 1

. 0 1 0 0 1

Link L 0 1 1 0 0

 Thus, a schedule is 
an LxT matrix of 1s 
and 0sLink L 0 1 1 0 0 and 0s

P bl Fi d h d l i h f h th t th Q S t i t

6

Problem: Find a schedule in each frame such that the QoS constraints are 
satisfied for each link



An Optimization Formulation
 S 1 if li k l i h d l d i i l k Slk = 1 if link l is scheduled in time slot k

 A : Number of arrivals to link l in a frame a random Al: Number of arrivals to link l in a frame, a random 
variable, with mean λl

 Constraint: Average number of slots allocated must be 
greater than or equal to the QoS requirement for each link l

E[min(k Slk, Al)]  ≥ λl(1-pl)

 A dummy optimization problem (A is some constant):
max A

7



Fictitious Queue
 R ll ≤ d Recall    y ≤ x corresponds to

 Similarly,

y x

S y,
E[min(k Slk, Al)]  ≥ λl(1-pl)

corresponds to

Upon each packet arrival
 li k dd  k  

Remove packet
from the queue

to link l, add a packet to
this queue with prob.
(1-pl)

q
every time a packet
is successfully 
scheduledDeficit counter:

K  t k f 

8

Keeps track of 
deficit in QoS



Optimal Schedule
 d d fi i f li k l dl: deficit of link l

 Choose a schedule at each frame to maximize Choose a schedule at each frame to maximize 

l dl (k Slk) l l (k lk)

subject to                        l Slk ≤ Al

 The constraint simply states the the number of slots
allocated to link l in a frame should not be greater than theallocated to link l in a frame should not be greater than the
number of arrivals in the frame

 This is simply the MaxWeight algorithm where the deficits
d i h i d f l h

9

are used as weights, instead of queue lengths



Resource Allocation
 B d j i i ll Beyond just meeting constraints: allocate extra resources to 

meet some fairness constraint

max l wl (k Slk)

subject to            E[min(k Slk, Al)]  ≥ λl(1-pl)

 Optimal Solution: Choose S in each frame to maximize

l (wl+² dl)(k Slk) l ( l l)(k lk)

10



Formulation with Elastic Flows

 xli is the transmission rate of an inelastic flow and xle is the 
transmission rate of an elastic flow

 Associating utility functions with inelastic flows, the 
objective becomes

max l wl xli+l Ul (xle)

 In the schedule, distinguish between the transmission of an 
elastic flow packet and an inelastic flow packetsp p

 Write down constraints as before to complete the problem 
formulation

11
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Solution with Elastic Flows
 A h li k i i f l i fl d At each link, maintain a queue ql for elastic flows and a 

deficit counter dl for elastic flows:

 Scheduling algorithm:

Max l (wl+² dl )(k Slki) +² ql (k Slke)

 Congestion control for elastic flows: Choose xle such that

Max Ul(xle
) – ql x

le

12



Theorem

 Result 1: 

E(l Ul (xle) + wl xli) - l Ul (xle*) + wl xli* = O(²)

 Result 2:

E(l ql +dl) = O(1/²)

² provides a tradeoff between optimality and queue 
lengths and deficits.

13



Simulations
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Application II: Short-Lived Flows
 M d l A b i i i b f i Model: A base station transmitting to a number of receivers

 The base station can transmit to only one user at a time The base station can transmit to only one user at a time

 Classical Model: a fixed number of users, say NC ss c ode : ed u be o use s, s y

 Each user’s channel can be in one of many states:
 R ( ) R hi h h b i i Ri(t): Rate at which the base station can transmit to 

User i if it chooses to schedule user I

 Classical problem: Which user should the base station 
select for transmission at each time instant?

15



Classical Solution
 S h h l i i i k h h Suppose that the goal is to maximize network throughput:
 i.e., the queues in the network must be stable as long as 

the arrival rates lie within the capacity region of thethe arrival rates lie within the capacity region of the 
system

 (Tassiulas-Ephremides ‘92): Transmit to user i such that
i ∈ arg max

j
q

j
(t) R

j
(t)

 Solution can be derived from optimization considerations as 
mentioned earliermentioned earlier

16



New Model: Short-lived Flows
 Wh if h b f fl i h k i fi d? What if the number of flows in the network is not fixed?
 Each flow arrives with a finite number of bits. Departs 

when all of its bits are servedwhen all of its bits are served
 Flows arrive according to some stochastic process 

(Poisson, Bernoulli, etc.)

 Since the number of bits in each flow is finite, need a new 
notion of stability since queues cannot become largenotion of stability since queues cannot become large
 Need the number of flows to be “finite” in some sense

Van de Ven, Borst, Shneer ‘09:  The MaxWeight algorithm 
need not be stabilizing: the number of flows can become 
i fi i h h l d li i hi h i i

17

infinite even when the load lies within the capacity region



Necessary condition for stability
 S h h l h i R Suppose each channel has a maximum rate Rmax

 A necessary condition for stability: y y
 F: File size, a random variable. Min expected number of 

time slots (workload) required to serve a file is
(d /R e)E(d F/Rmax e)

 λ: Rate of flow arrivals (number of flows per time slot) λ: Rate of flow arrivals (number of flows per time slot)

 Necessary condition for stability : Necessary condition for stability :

λ E(d F/Rmax e)  < 1

18



Scheduling Algorithm
 T i h i h h b h i i Transmit to the user with the best rate at each time instant, 

Maxi Ri(t)

 Does not even consider queue lengths in making scheduling 
decisions

 Why does it work?
 Wh h b f fl i h k i l When the number of flows in the network is large, some 

flow must have a rate equal to Rmax with high 
probabilityp y

 Thus, we schedule users when their channel condition is 
the best; therefore, we use the minimum number of time 
slots to serve a user

19

slots to serve a user



Short-Lived and Long-Lived Flows
 N id h i i h h l li d Now consider the situation where there are some long-lived 

(persistent) flows in the networks

 Why does this model make sense, after all, every flow has a 
finite size in reality?
 File sizes are heavy-tailed: from the point of view of 

small-sized flows, the large-sized flows can be thought 
as persistentas persistent

 For simplicity, we will consider the case of one long-lived p y g
flow which generates packets at rate ν packets per time slot

 S l i i i i i f l i

20

 Solution: using an optimization formulation



Capacity constraints
 R hi h h l li d fl b d h i Rc: rate at which the long-lived flow can be served when its 

channel state is c (a random variable)

 πc: probability that the long-lived channel state is c

 pc: probability of serving the long-flow in state c

 Constraints: 

 L li d fl ≤  R Long-lived flows: ν ≤ 
c
π

c
p

c
R

c

 Short-lived flows: λ E(d F/Rmax e) ≤  π (1-p )

21

 Short lived flows: λ E(d F/R e) ≤ 
c
π

c
(1 p

c
)



Optimization Interpretation
 L l i li f ≤  R Lagrange multiplier of ν ≤ 

c
π

c
p

c
R

c
 Left-hand side is packet arrival rate, right hand side is 

packet departure rate of long-lived flowspacket departure rate of long lived flows
 So, the Lagrange multiplier is (proportional to) the 

queue length of long-lived flows

 Lagrange multiplier of λ E(d F/Rmax e) ≤ 
c
πc (1-p

c
)

 L f h d id i b f l ( kl d) i d Left-hand side is number of slots (workload) required to 
serve short-lived flows, the right-hand side is the 
number of slots available 

 So, the Lagrange multiplier is (proportional to) the 
minimum number of slots required (workload) to serve 
the short lived flows in the solution

22

the short-lived flows in the solution



Optimization Solution
 If h kl d f h li d fl i l h h If the workload of short-lived flows is larger than the queue 

length of the long-lived flow, then serve a short-lived flow
 Choose the flow with the best channel condition Choose the flow with the best channel condition

 Else, serve the long-lived flow

 Extensions: 
 More than one long-lived flow
 Different short-lived flows have different Rmax

 Th Rm x’ k l it b i th b t The Rmax’s are unknown; learn it, by using the best 
channel condition seen by each flow so far

23



Simulations
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Distributed Implementation: Model

Links may not be able 
to transmit 
simultaneously due todata simultaneously due to 
interference.
Scheduling algorithm 

ACK

g g
determines which 
links transmit at each 
time instanttime instant.
Performance metrics: 

throughput and
e.g., 2-hop interference 
model throughput and 

delay.
25
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Quick Recap

 MaxWeight Scheduling (centralized, high complexity): 
 Associate a weight with each link equal to its queue Associate a weight with each link, equal to its queue 

length.
 Find schedule x which maximizes w(x); w(x): weight 

f h d l i h f h i h f h li kof a schedule x is the sum of the weights of the links 
in the schedule.

 Throughput Optimalg p p

 Useful Observation [Eryilmaz-S.-Perkins’05]: 
MaxWeight is throughput optimal even under theMaxWeight is throughput-optimal even under the 
following modification:  pick a schedule of weight 
sufficiently close to max-weight schedule with high 
probability going to one as the weight of the MWS goesprobability, going to one as the weight of the MWS goes 
to infinity.

26



Low-Complexity Schedules

 Maximal Scheduling
 A schedule is maximal if no additional link can be 

added to it without violating the interferenceadded to it without violating the interference 
constraints.

 May only achieve a small fraction of the capacity 
region.

 Greedy Maximal Scheduling (GMS)
 Sequentially add a link with the longest queue to the Sequentially add a link with the longest queue to the 

schedule until it is maximal (Dimakis-Walrand, Joo-
Lin-Shroff, Zussman-Modiano, Leconte-Ni-S.).
I l l hi f i f h i In general may only achieve a fraction of the capacity 
region (throughput optimal if local pooling condition 
is satisfied).

 Performance close to MWS in simulations.
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Random-Access Algorithms

 Aloha (Slotted)
 Transmit a fresh packet at the beginning of the next slot; if collision, 

retransmit the packet in each subsequent slot with probability p until p q p y p
success.

 Only efficient under light traffic.

 Carrier Sense Multiple Access (CSMA)
 Sense the channel before transmission. If busy, keep silent; if free, 

attempt to join the schedule after a random backoff time.
 Continuous-Time CSMA Model (no collisions)
 Boorstyn et al.(’87): distribution over schedules has a product-form.
 Jiang-Walrand(’08) Rajagopalan-Shah-Shin(’08): CSMA can Jiang Walrand( 08),  Rajagopalan Shah Shin( 08): CSMA can 

achieve max throughput if mean backoff time is updated based on 
link weight.

 Other Related Works

28

 Other Related Works
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Goal

 Design a distributed algorithm which picks 
schedule x with probability

Z
ex

xw )(

)( 

 Note: algorithm picks schedules of large weights

Z

 Note: algorithm picks schedules of large weights 
with high probability, as required.

 Focus today: Discrete-time model which allows y
the algorithm to be combined with heuristics 
leading to dramatic delay reduction; explicitly 
takes into account collisions

29



Modeling Assumption

 Divide each time slot into a control slot and a 
data transmission slot:

Time Slot t Time Slot t+1e S o e S o

control mini-slots data slot control mini-slots data slot

Links contend in control mini-slots to determine a 
collision-free schedule in the data slotcollision free schedule in the data slot.
Collisions are allowed in the control mini-slots.

30



Interference Graph

 Each vertex in the 
interference graph represents 
a link in the network.

 If two links interfere withe

schedule x = {a, d, g}

 If two links interfere with 
each other, they are neighbors 
in the interference graph.

 A f ibl h d l t fa

b

d
g

 A feasible schedule: a set of 
vertices which are not 
neighbors of each other, i.e., 
h f i d d

a

c

d
g

f
they form an independent set.

 We consider one-hop traffic 
only.

c

y
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 S 1 I l l l “d i i h d l ” ( )

Basic Scheduling Algorithm
 Step 1. In control slot t, select a “decision schedule” m(t): a 

set of links that may decide to change their state from the 
previous slot; other links cannot change their state.p ; g

 Step 2. For any link i in m(t) do
 If no links in  its conflict set C(i) were active in the 

previous data slot, link i will decide to become
 active with probability p : x (t)=1 active with probability pi:  xi(t)=1
 inactive with probability 1-pi:   xi(t)=0

 Else, link i will be inactive: xi(t)=0Else, link i will be inactive: xi(t) 0

 Step 3. In the data slot, use x(t) as the transmission 
schedule.

32



Illustration

 Current schedule: {a, e}
 Decision schedule m(t)={c, f}
 Allowed decisions for links 

in m(t):
b

e

in m(t):
 Link c, xc(t)=0 (no 

choice)
a d g

)
 Link f, xf(t)=1 (w.p. pf)

 Other links’ states are 
c

f

unchanged.
 New schedule: x(t)={a, e, f}

33





Schedule Evolution Markov Chain
 If both x(t-1) and m(t) are feasible, then x(t) is also 

feasible.

 x(t) evolves as a discrete-time Markov chain 
(DTMC) (if (t) i i k d t d i h ti(DTMC) (if m(t) is picked at random in each time 
slot).

 x can make a transition to y if and only if x∪y is 
feasible and there exists a decision schedule mfeasible and there exists a decision schedule m
such that 
x y ⊆ m.y

34



Product-Form Distribution

 Proposition: If the set of possible decision 
schedules includes all the links, then the 
DTMC is reversible and the steady-state 
probability of using schedule x is

1




 


xi i

i

p
p

p
Z

x
1

1)(


  


Mx xi i

i

p
pZ

1
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Outline of Proof

 State 0 can reach any state x (collision-free 
schedule) with positive probability in a finite 
number of steps, and vice versa.

 Local balance equation is satisfied.
p(x,y)

x y

p(y,x)

 (x) p(y,x) = (y) p(y,x)
36



Throughput Optimality

 Choose pi for link i (whose weight is wi) as
pi/(1-pi)=exp(wi),pi/( pi) p( i),

then the probability of choosing a schedule x with 
weight w(x) is given byg ( ) g y

ep xw
wi

)(11)( 

Thus a schedule of large weight is picked with
Z

ee
Zp

p
Z

x
xi

w

xi i

i i
1

1
1)( 


 





Thus, a schedule of large weight is picked with 
high probability.

 Question: How to pick the decision schedule? Question: How to pick the decision schedule?
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Q-CSMA

 Each time slot  is divided into a data slot and control mini-slots.
 The control mini-slots are used to determine the decision 

schedule in a distributed manner; each link i selects a random 
control mini-slot Ti in [1,W].

link i : Ti = 3 (W = 4)

INTENT Message

 Roughly, the idea is that a link will send a message announcing 

data slotcontrol mini-slots
link i : Ti  3 (W  4)

its intent to make a decision during its chosen control mini-slot 
if it does not hear such a message from its neighbors.

38



Case 1

 If link i hears an INTENT message from a 
link in its neighborhood C(i) before its chosen 
mini-slot, it will keep its state unchanged 
from the previous time-slot.
 If it was active in the previous time slot, it will continue to 

be active; will be inactive otherwise.
INTENT Message

data slotcontrol mini-slots
Link j : Tj = 2

data slotcontrol mini-slots
Link i : Ti = 3

39



Case 2

 Otherwise, link i will broadcast an INTENT
message to links in C(i) in the Ti-th control g ( ) i
mini-slot. 

 Case 2: If there is a collision, link i will not 
change its state.

INTENT Message

data slotcontrol mini-slots
Link j : Tj = 3

data slotcontrol mini-slots
Link i : Ti = 3

INTENT Message

40



Case 3

 If there is no collision, link i will make its 
decision: 
 If no links in C(i) were active in the previous data 

slot, then link i’s state is chosen as follows:
active with probability pip y pi
inactive with probability1-pi

 Otherwise: inactive

data slotcontrol mini-slots
Link j : Tj = 4

d t l tt l i i l t
Link i : Ti = 3

INTENT Message

data slotcontrol mini-slots

41



Key Property of Q-CSMA

Proposition 2. The Q-CSMA algorithm achieves 
the product-form distribution if the window sizethe product form distribution if the window size 
W≥ 2.
 Any maximal schedule will be selected as the y

decision schedule with positive probability.
 The set of maximal schedules includes all the links.

 Modification: Works even if  W=1. A link 
chooses to participate in the decision schedule 
with probability ½. Again, one can show that y g
the above result is still valid.

42





Hybrid Q-CSMA

 The delay performance of Q-CSMA can be 
quite bad although it is throughput-optimal.

 Question: can we enhance Q-CSMA to achieve 
better delay performance while retaining the 
h h i li ?throughput-optimality property?

 Idea: combine Q-CSMA with distributed 
i i f d i l h d liapproximations of Greedy Maximal Scheduling 

(GMS)
h i k f f Why GMS? GMS is known to often perform as 

well as MWS in simulations (but is not provably 
throughput-optimal except in the case of smallthroughput optimal except in the case of small 
networks).
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Distributed Approximation of GMS

 A control slot is divided into B frames, with 
each frame consisting of  W mini-slots.

 Links are assigned a frame based on the log 
(base = b) of their queue lengths, and the W( ) q g
mini-slots within a frame are used to resolve 
contentions among links in a neighborhood.

qi ≥ 64 qi ∈ [8, 64) qi ∈ [1, 8)

data slotcontrol mini-slots
B=3, W = 4, b = 8
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D-GMS

 At the beginning of each time slot, link i with queue length 
qi selects a random control mini-slot:

  ],1[Uniform)1(log WqBWT ibi  

 If link i hears an RESV message from one of its neighbors 
before its chosen control mini-slot: be inactivebefore its chosen control mini slot: be inactive.

 Otherwise, link i will broadcast an RESV message at the 
beginning of  Ti-th control mini-slot:
 collision: be inactive;
 no collision: transmit a packet in the data slot.
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Hybrid Q-CSMA

Hybrid Q-CSMA

Q-CSMA

wi ≥ w0

D GMS

wi < w0

Q D-GMS

 For links with weight greater than a 
threshold w0, apply Q-CSMA;

 For links with weight smaller than the 
threshold, apply D-GMS.
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One Slot of Hybrid CSMA

Transition Mini-
Slot

(Links scheduled by Q-CSMA will send an RESV message.)

qi ≥ 100 qi ∈ [8,64) qi ∈ [1,8)qi ∈ [64,100)

data slotmini-slots for Q-CSMA
W0=4

mini-slots for D-GMS
B=3, W1=4, b=8
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Key Properties of Hybrid CSMA

 The transmission schedule for links with weight 
greater than the threshold is chosen according togreater than the threshold is chosen according to 
the product-form distribution as before.

 Additional links (with weight smaller than the 
threshold) are added if possible using D-GMS 
which improves the delay performance.

 Hybrid Q-CSMA is provably throughput-optimal
(links with small weight don’t matter).
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Distributed Maximal Scheduling

 D-MS:
 At the beginning of each time slot, link i selects aAt the beginning of each time slot, link i selects a 

random control mini-slot Ti=Uniform[1,W].
 If link i hears an RESV message from one of its 

neighbors before its chosen control mini-slot: be 
inactive.

 Oth i li k i ill b d t RESV Otherwise, link i will broadcast an RESV message 
at the beginning of  Ti-th control mini-slot:
 collision: be inactive; collision: be inactive;
 no collision: transmit a packet in the data slot.
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Simulation Evaluation

24 Li k G id N k  Use a convex combination of24-Link Grid Network
(1-hop interference model)

 Use a convex combination of 
several maximal schedules 
scaled by  ∈ [0,1] as the 

i l t t barrival rate vector,  can be 
viewed as the traffic intensity.

 Compare GMS (centralized), 
D-GMS, D-MS, Q-CSMA, 
Hybrid Q-CSMA, allocate the 
same overhead for every 
distributed algorithm.

 Performance metric: long-term 
average queue length per link.

50

average queue length per link.
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Grid Network Simulations
G S/ S ave

very good delay 
performance below a 
certain traffic intensity,  

and become unstable 
afterwards.

 Q-CSMA has worse 800
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delay performance than 
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performance among all 
distributed algorithms.
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Ring Network

9 Li k Ri N k

 This example shows that 
GMS may only achieve a 
fraction of the capacity 

i9-Link Ring Network
(2-hop interference model)

region.
 Small maximal schedules: 

{1,5}, {2,6},{3,7},{4,8}, etc.
 Big maximal schedules:

{1,4,7}, {2,5,8}, {3,6,9}.
 There exists a traffic pattern 

that forces GMS to use small 
maximal schedules only, 
give a service rate of     

k t / li k 9
2

packet / link.
 If we time share among big 

maximal schedules, then we 
k t / li k

9

1
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can serve     packet / link.3
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Ring Network Simulations

4500  

 GMS, D-GMS, 
and D-MS are 
not stable (the 

3500
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i ) f h
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respectively.
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Hybrid Q-CSMA 
have much lower 
delay and the 
queue lengths are
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stable.



Conclusions
 O i i i h id kb k f l i Optimization theory provides a cookbook for solving 

resource allocation problems in queueing networks

 Lagrange multipliers are proportional to queue lengths
 May need to interpret queue length appropriately: e.g., 

deficit counters, workloads

 R ll i d i i d b i Resource allocation decisions are made by comparing 
Lagrange multipliers using the MaxWeight algorithm
 Typically obvious when writing out the dual formulation yp y g

 Distributed Algorithms: Similar to techniques in statistical 
h i
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