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Outline

 Introduction

 Two key problems

 Architecture for fair resource allocation (Srikant)

 Distributed Algorithms (Eryilmaz)

 Open Issues 
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Multihop wireless network
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Multihop wireless network

 Different types of traffic sharing the wireless 

network:

 Unicast and multicast

 Short flows and long flows

 Elastic and Inelastic

 Real-time (with delay & jitter requirements) and non-

real-time

 Need an efficient protocol stack to allocate 

resources between these different types of flows.
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Resource Allocation

 Design an optimal protocol stack architecture for 

networks with unicast and multicast flows

 Functional decomposition: what should the end users do? what 

should the network do? what should the nodes in the network do?

 We only consider long elastic unicast and multicast flows.

 Short flows and inelastic flows can be given higher priority and will 

act like stochastic fluctuations in the channel model.

 Literature:

 Optimization & stochastic networks for unicast traffic: Eryilmaz & 

Srikant „05, „06; Stolyar „05, „06; Neely, Modiano & Li ‟05; Bui, 

Srikant & Stolyar „08

 Optimization ideas for unicast traffic: Lin & Shroff ‟04, Chiang 

‟04, Lai, Pachalidis & Starobinski „05.
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Three-node wireless network

User 0

User 1

User 2

cA=1
cB=1

a0 is the fraction of

time link A is used for

user 0

Either link A or 

link B can be 

active, but not 

both.

subject to
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Lagrange Multipliers

subject to
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Lagrangian Decomposition

Congestion control:

 User 0:

…

MAC or Scheduling:

Solution is an 

extreme point!
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Resource Constraints and Queue Dynamics

subject to

• Lagrange multipliers 

≈ Queue lengths

• Arrival rate into a 

queue is departure rate 

from previous queue
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Congestion Control for flow f : Decrease transmission rate if 

ingress queue length is large.

Ingress

Queue length

20 60 80 20
Weights =

Back-pressures
-40 -20 60

 Back-pressure algorithm controls congestion in the interior of the 

network

 Thus, unlike the TCP protocol in the Internet, source does not have to 

react to end-to-end congestion

Ingress Queue-based Congestion Control
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Queueing and Optimization

 Each constraint is represented by a queue:

y ≤ x

 Stability of the queue implies constraint is satisfied and 

vice-versa

 Proofs don‟t immediately follow from dual decomposition 

theory

 Stochastic networks: Theory extends to general stochastic 

networks; the optimization problem is formulated in terms 

of “averages.”

y x
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Multicast Session: One-to-Many

 Assume fixed routing: multicast trees are given.

 Single-rate multicast:

 All receivers have to receive at the same rate.

 Those above results can be easily extended, with some 

modifications to the back-pressure algorithm.

 Multi-rate multicast?

 Each receiver can choose to receive at a different depending upon 

the congestion in their neighborhood (Internet: Deb & Srikant; Kar, 

Sarkar & Tassiulas).

 Very important in wireless networks; otherwise, all rates may become 

zero frequently

 Implemented using layered video coding, for example. Each 

receiver can subscribe to a subset of the layers.
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Multi-rate multicast

 One sender, two receivers

 Example of constraint: 

x

x1, U1(x1)

x2, U2(x2)

μA

μB

μD

μC
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Solution: Multi-rate multicast

 Constraint:

 A fictitious queueing network sending fictitious packets in the opposite 
direction enforces the constraints.

 The red queue doesn‟t behave like a normal queue: its arrival rate in a 
time slot is the maximum (not the sum) of the departure rates from the two 
blue queues.

Source μB

μD

μC
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Real Packet Generation

Source rate 
x

• Source can send a packet for every token, or can generate 9 packets 

for every 10 tokens received.

• Tokens inform the source of the amount of resources reserved for 

it.

• Source can use this information, but sends at a smaller rate to 

ensure the stability of the real queues (yellow).
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Result I

 Token generation rate at each destination is equal 
to the solution of the optimization problem.

 Fraction of packets reaching each destination is 
close to the token generation rate of the destination.

 The Markov chain of the shadow queues and the 
real queues is positive recurrent.

 The first moments of the queue lengths exist and 
are finite.
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Finite-buffer queues

 Real packet generation policy: transmit as many real packets at the source 
as tokens received; no thinning as before.

 Result II: When the buffer size is large, the received rate at each receiver 
is close to the token generation rate.

Source rate 
x

H
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Summary of Architectural Results

 End users perform congestion control.

 Network allocates resources using the back-
pressure algorithm:

 Shadow queues are necessary to enforce multicast 
constraints.

 Shadow packets serve as permits or tokens to 
generate packets.

 Shadow network pushes packets from receivers to 
sources.

 Sources send real packets in the opposite direction.

 The back-pressure algorithm is implemented using 
shadow queue lengths.



Open Issues
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Routing

 Back-pressure algorithm can also be used to 

select routes 

 No pre-defined routes necessary; automatically 

finds routes for each packet to maximize 

throughput

 Per-packet routing at each node can result in 

loops, out-of-sequence delivery, etc. leading to 

large delays even when the network is lightly 

loaded. Solution?
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Per-neighbor queues

 Reducing the number of queues:

 Existing solutions require that each node (link) has 

to keep a separate queue for each flow (per-flow 

queue) or for each destination (per-destination 

queue)

 Per-neighbor queues would lead to significant 

reduction in number of queues at each node

 Even with fixed routing, per-destination queues 

lead to large delays when the number of hops is 

large. Per-neighbor queues may reduce the delay

 But is the network stable?



Decentralization & Complexity

 Atilla Eryilmaz….
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Distributed Algorithm Design

Atilla Eryilmaz

Ohio State University
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Congestion control:

Back to the 3 node example

User 0

User 1

User 2

cA=1
cB=1

Either link A or 

link B can be 

active, but not 

both.

MAC or Scheduling:



Back to the 3 node example

6/2/2008 25

Interference Constraints

Link Capacity Constr.

User 0

User 1

User 2

cA=1
cB=1

Either link A or 

link B can be 

active, but not 

both.



Back to the 3 node example
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Interference Constraints

Link Capacity Constr.

Interference constraint determines 

the set of allowable link rates

wa = max(pa0 - pb0, pa1)

wb = max(pb0 , pb1)



Elaboration on - Primary Interference

 In general is a complex set of rate 

allocations that depends on the topology 

and interference model

 Thus, it is very difficult to compute      

l l wl over 

6/2/2008 27

µbµa µc
Primary interference model: 

Any two active links must 

be separated by ¸ 1 link

µa

µc

µb

1

1

1
= Stars in the figure

co( ) = Convex hull of 

Kth order interference model: 

Any two active links must be 

separated by ¸ K links

co( )



 Let

 Given the locally computable link weights w, we 

aim to (approximately) solve 

distributively and with low-complexity operations.

Goal
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w = (wa, wb)

µa

µb
 Different values of w lead to 

different * (w)

 For large values of w

bounded changes in w has 

little effect on * (w)



Different Approaches

1. Greedy Algorithms [Lin, Shroff `05, Chaporkar, Kar, Sarkar `05, Wu, Srikant 

`05, Changhee-Joo et al. `07,`08, Brezinski, Zussman, Modiano `07,`08, etc.] 

 Choose link rates greedily from the largest weight to the smallest weight

 In general, can only guarantee a fraction of the capacity region

 Achieves full capacity for some cases

2. Pick and Compare Algorithms [Tassiulas `98, Modiano, Shah, Zussman `06, 

Eryilmaz, Ozdaglar, Modiano `07, `08, Sanghavi, Bui, Srikant `07, etc.]

 Gradually improves the chosen link rates to get to the optimum over time

 Can achieve full capacity for general topologies and interference

 Higher complexity than greedy

3. Random Access Algorithms [Gupta, Stolyar `06, Gupta, Lin, Srikant `07, 

Rasool, Lin `07, Stolyar `07, Marbach, Eryilmaz, Ozdaglar `07, etc.]

 Uses Aloha-like methods together with queue-lengths to adjust attempt 

probabilities

 Achieves a fraction of the capacity region

 Lowest complexity

4. Others [Shah `04, Deb et al. `06, …]
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1. Greedy Maximal Matching (GMM)

Procedure:

1. Pick the link with the greatest 

weight

2. Eliminate all links that interfere 

with the selected link

3. Pick the link with the greatest 

weight in the remaining graph

4. Repeat.
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4

2
3

0

2

2

9

8 7

1

5

7

MaxWeight  = 21

GMM Weight = 16

 In general, one can state that (for primary interference model)

GMM Weight ¸Max Weight / 2

 In practice, GMM works much better than this lower bound

 Several works show that GMM can achieve full performance 

in the network satisfies certain properties 

Primary Interference Model



A Summary of Results on GMM

 [Preis `99], [Hoepman `04] – GMM can be implemented distributively

 [Dimakis, Walrand `05] found conditions under which GMM achieves 

full efficiency

 [Brzezinski, Zussman, Modiano `06, `08], [Joo, Lin, Shroff `07, `08] 

built on the work of Dimakis et al. 

 to translate the conditions into specific network topologies,

 to develop schemes that can guarantee optimal performance, 

 to extend the conditions and study the worst case performance under various 

interference models

 [Joo et al. `08] showed that the worst case efficiency of GMM is 

between 1/6 and 1/3 for general Kth order geometric network graphs. 

 A variant of GMM is the Maximal Matching (MM) algorithm which 

selects a random matching over the non-zero-weighted links

 [Chaporkar, Kar, Sarkar `05] and [Wu, Srikant, Perkins `06] studied the 

worst case performance of MM and showed that in the worst case it 

may perform very poorly
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2. Pick and Compare Algorithm (PCA) 

 Procedure: At step t, 

1. Pick: Select any feasible schedule (rate allocation) R randomly s.t.

P( R = *(w[t])) ¸ 

for some  > 0.

2. Compare: Select the allocation [t] such that
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µa

µb

w[t-1]

[t-1]

w[t]

R

*(w[t])

 [t] = R
 As time progresses, [t] will 

gradually converge toward 

*(w[t])

 Theorem: PCA policy will 

achieve full capacity region for 

very general scenarios

 How to operate distributively?



Distributive operation [E., Ozdaglar, Modiano `07]

 Secondary 

interference model

 Grid network
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 Two allocations :

[t-1] , R

 Goal: compute and 

compare the total 

weights of the blue 

and red allocations 

distributively

 Connect the 

interfering links

 Creates isolated 

network components

 Each component can 

compare the two 

schedules 

independently



Conflict Graph
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Find Spanning Tree

Communicate & Decide

COMPARE ALGORITHM



Find Spanning Tree Procedure
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token-based

depth-first 

distributed 

spanning tree

construction

t



Communicate & Decide Procedure
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Results

 This algorithm achieves 100% efficiency with O(N3) time 

and O(N2) message exchanges in the worst case.

 [Modiano, Shah, Zussman `06] gives deterministic 

algorithms for the primary interference model, and gossip-

based randomized algorithms for more general interference 

models with polynomial complexity and 100% efficiency.

 [Sanghavi, Bui, Srikant `07] focuses on primary 

interference model to develop O(m) complexity algorithm 

that achieves (m/(m+2)) fraction of the capacity region

 [Eryilmaz, Ozdaglar, Shah, Modiano `07, `08] studies the 

effect of the distributive implementations on the utility 

maximization problem, with and without imperfections and 

errors in the operation. 
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3. Random Access Algorithms

 In random access, the nodes try to capture links for 

transmission randomly

 Random access algorithms are amongst the lowest complexity 

algorithms there is

 But, with random access, collisions may be unavoidable

 Idea : Exploit locally available link weight information to set 

the channel access probabilities so that the link with a higher 

weight has a higher chance of capturing the channel, and 

collisions are limited

 The resulting algorithm is low complexity and amenable to 

distributed implementation, but is suboptimal

 Typically there is a tradeoff between the complexity and the 

degree of optimality of these schemes
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Random Access Algorithms

 [Kar, Sarkar, Tassiulas `04], [Wang, Kar `05] proposed optimal random access 

schemes that use network topology information to achieve proportional-

fairness

 [Gupta, Stolyar `05], extended the static scenario of Kar et al. to include 

dynamic link weights in the transmission probability selection

 [Stolyar `05], [Liu, Stolyar `07] used local queue-lengths to determine the 

transmission probabilities of each node, and showed that saturation throughput 

region of Aloha is supportable with their scheme

 [Marbach `04, `07] also suggested a combination of queue-length-based 

channel access and active-queue-management, and studied its stability 

characteristics

 [Lin, Rasool `06], [Gupta, Lin, Srikant `07] studied several other queue-length-

based random access strategies with varying complexities and efficiency ratios 

(ranging from 1/3 to 1/2)

 [Bui, Eryilmaz, Srikant `06] studied the asynchronous implementation of a 

cross-layer algorithm with a random access scheduler.

 [Marbach, Eryilmaz, Ozdaglar `07] proposed and analyzed a CSMA policy with 

vanishing sensing time that achieves full efficiency as the network size scales
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Open Problems

 Utility Maximization

 Non-concave utility functions

 Incorporating delay constraints

 Network Coding  

 [Ho, Viswanathan `05, Eryilmaz, Lun `07, Ho `07, Wang, Shroff `07]

 Rate of convergence

 …

 Distributed Algorithm Design

 Even Lower Complexity implementations and fundamental bounds

 Overhead issues

 Rate of convergence, delay performance analysis

 Dealing with dynamics – mobility, fading

 Asynchronous operation

 …
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