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Abstract—In this paper, we investigate the throughput and
decoding-delay performance of random linear network coding
as a function of the coding window size and the network size in
an unreliable single-hop broadcast network setting. Our model
consists of a source transmitting packets of a single flow to
a set of N receivers over independent erasure channels. The
source performs random linear network coding (RLNC) over
K (coding window size) packets and broadcasts them to the
receivers. We find that the broadcast throughput of RLNC must
vanish with increasing N , for any given K. Hence, in contrast
to other works in the literature, we investigate how the coding
window size K must scale for increasing N . By appealing to the
Central Limit Theorem, we approximate the Negative Binomial
random variable arising in our analysis by a Gaussian random
variable. We then obtain tight upper and lower bounds on the
mean decoding delay and throughput in terms of K and N . Our
analysis reveals that the coding window size of ln(N) represents
a phase transition rate below which the throughput converges to
zero, and above which it converges to the broadcast capacity.
Our numerical investigations show that the bounds obtained
using the Gaussian approximation also apply to the real system
performance, thus illustrating the accuracy of the analysis.

Index Terms—Broadcast, Delay Analysis, Erasure Channel,
Network Coding.

I. INTRODUCTION

We consider an important transmission scenario, occurring
in many communication systems, whereby a source must
broadcast common information to many receivers over wire-
less channels in a timely manner. Such a scenario occurs, for
example, in a satellite or cellular network where a satellite or
base station broadcasts a large file or streaming multi-media
data to many receivers within their footprint over unreliable
channels. Another example occurs in a multi-hop wireless
network where each node broadcasts control information to all
its immediate neighbors to coordinate medium access, power
control, and routing operations. We note that such local sharing
of control information (such as queue-length or other pricing
information) is common to many provably efficient network
controllers (e.g. [1], [2], [3] etc.).

In this work, the essential components of such wireless
broadcast systems are modeled through a transmitter broad-
casting consecutive blocks of K data packets over indepen-
dently fading erasure channels with erasure probability p
to N receivers. Assuming that the transmitter is infinitely
backlogged, we consider transmission strategies that transfer

the data in blocks of K packets, which include the class of
block coding strategies. Among all such block transmission
strategies, it has previously been shown (see [6]) that, for any
fixed N and K, Random Linear Network Coding (RLNC)
strategy (see Section III for a detailed description) asymp-
totically1 minimizes the number of transmissions required to
complete the transfer of all K packets at all N receivers (also
called the block completion time).

With this motivation, we focus on the scaling performance
of RLNC as a function of K and N with respect to the
following two key metrics: the (broadcast) throughput, defined
as the data transfer rate to all receivers; and the (broadcast)
decoding delay, defined as the amount of time spent between
the start of a block transmission and its completion (i.e.
successful decoding) at all the receivers.

It is not difficult to see that the (broadcast) capacity of
such a collection of N erasure channels, for any N, is equal
to (1 − p) packets per time slot. Moreover, this maximum
limit on the throughput can be arbitrarily closely achieved by
encoding information into an arbitrarily large block size, K.
Yet, this is not attractive since it leads to a decoding delay that
diverges to infinity. In this work, we address the question of
whether RLNC can achieve throughput arbitrarily close to the
capacity while yielding acceptable decoding delay. The main
contributions of this work are:
• We find that the broadcast throughput of RLNC must vanish

for any fixed K as N tends to infinity. We expose the cause of
this behavior through a key example (see Section II), which
motivates our search of a proper scaling of the block size K
with increasing N.
• We introduce a tractable approximation of the original

system by applying central limit theorem to properly scaled
system parameters. We then establish tight bounds on the
throughput and decoding-delay performance of the approxi-
mate system by using a combination of parametric bounding
and optimization, as well as uniform bounds on the order
statistics of Gaussian random variables.
• Our analysis reveals a phase transition in the performance

of the approximate system that occurs at the block length
scaling rate of K = Θ(ln(N)) with respect to the network
size. Specifically, we show that if K increases slower than

1This asymptotic is with respect to increasing field size over which the data
packets are defined (see Section III).



ln(N), then the broadcast throughput of RLNC converges to
zero, and if K increases faster than ln(N), then the broadcast
throughput of RLNC converges to the broadcast capacity of
(1− p).
• We provide extensive numerical results that compare the

performance of the actual system performance to that of
the approximate results. Our results uniformly show that the
approximation is highly accurate, and the tight upper and
lower bounds on the approximation hold for the actual system
parameters.

These results collectively imply that RLNC can achieve
throughput-delay tradeoff2 of ((1 − p), Ω(ln(N))). This is
an attractive result as it indicates that as long as the coding
block size scales super-logarithmically (i.e., very slowly) with
the network size, the broadcast capacity is achievable with a
simple policy such as RLNC.

The rest of the paper is organized as follows. In Section II,
we overview some of the relevant work in this context and
provide an example that motivates this work. After introduc-
ing the main system components in Section III, we provide
our throughput and delay analysis of RLNC in Section IV.
Our findings are confirmed in Section V through extensive
numerical studies. Finally, our conclusions and remarks on
future work are provided in Section VI.

II. RELATED WORK AND MOTIVATING EXAMPLE

Our model is similar to that considered in [5], [6], [7].
In [5], Ghaderi et al. quantify the reliability gain of RLNC
for a fixed coding window size and show that this scheme
significantly reduces the number of retransmissions in lossy
networks compared to an end-to-end ARQ scheme. The delay
performance gains of RLNC were observed by Eryilmaz et al.
in [6]. They show that, for a fixed coding window size K, the
network coding capability can lead to arbitrarily better delay
performance as the system parameters (number of receivers)
scale when compared to traditional transmission strategies
without coding.

Also, in a similar setup as in this paper, it has been shown
recently in [7] that there exists a phase transition with respect
to decoding delay such that there exists a threshold on the
number of transmissions below which the probability that a
block of coded packets can be recovered by all the nodes
in the network is close to zero. On the other hand, if the
number of transmissions is slightly greater than the threshold,
then the probability that every node in the network is able to
reconstruct the block quickly approaches one.

All of the aforementioned works [5], [6], [7] study the
gains of the network coding as the system size grows while
the coding window size is held constant. In particular, they
show that the decoding delay of RLNC scales as O(ln(N))
for a fixed coding window size as N → ∞. However it can
be seen that when the coding window size is held constant,

2We use the standard order notation: g(n) = ω(f(n)) im-
plies limn→∞(g(n)/f(n)) = ∞; and g(n) = Ω(f(n)) implies
limn→∞(g(n)/f(n)) ≥ c for some constant c; and g(n) = Θ(f(n))
implies limn→∞(g(n)/f(n)) = c for some constant c.

the throughput of the system goes to zero as the system
becomes large because each receiver gets a block of K
packets in O(ln(N)) time slots. Therefore, it is important to
study the system when K is scaled as a function of N .
The following example further highlights this point and
motivates our investigation of the throughput-decoding delay
tradeoff of RLNC:

Example 1: Consider a single source broadcasting blocks
of K packets to N receivers in a rateless transmission. Each
packet is a vector of length m over a finite field Fd. In each
time slot, the source broadcasts a random linear combination
of K packets. Using random linear coding arguments intro-
duced by Ho et al. [8], for a large enough field size d, it is
sufficient for the receivers to receive approximately K coded
packets to be able to decode the block.

Let the random variable M [t] represent the number of
receivers that have successfully decoded K packets in t ≥ K
time slots. Let r[t] represent the probability that any given
receiver receives at least K packets in t ≥ K time slots.
Then, M [t] is a binomial random variable with probability
of success r[t], where r[t] =

∑t
l=K

(
t
l

)
(1 − p)lpt−l. Then

E(M [t]) = Nr[t]. Here r[t] represents the fraction of receivers
that have successfully decoded K packets by the time t.
To compare the behavior of r[t] as a function of t for different
values of K, we define a normalized time variable, s = t−K

K .
Accordingly, we define r′[s] = r[Ks + K], which can be
interpreted as the fraction of receivers that have successfully
decoded a single packet in a block of K packets by s time
slots. The comparison of r′[s] for different K allows us to see,
in a normalized time scale, the fraction of receivers that can
decode an equivalent of a single packet from a batch of K.
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Fig. 1. Fraction of receivers that have successfully decoded a single packet
in a block of K packets in s time slots, r′[s] as a function of s for p = 1/2

We numerically evaluate r′[s] as a function of s for different
values of K as shown in the Figure 1 for the case where
p = 0.5. It can be seen from the graph that for K = 30, a large



fraction of users are served within a short duration and then
the source takes a relatively longer time to serve the remaining
small fraction of users towards the end of the transmission of
the current block of K packets. On increasing K to K = 60,
the graph becomes sharper indicating that the source serves a
larger fraction of users in a shorter duration and takes lesser
time to serve a smaller fraction of users towards the end of
the transmission.

Ideally, we would like all the users to complete decoding
together for an increase in throughput. This can be achieved by
increasing K indefinitely as observed from Figure 1. However,
this causes the decoding delay to increase indefinitely as well.
Hence, it is important to understand the throughput-delay
tradeoff as K scales as a function of N .

III. SYSTEM MODEL

In this work, we study the basic wireless broadcast scenario
depicted in Figure 2 that models the characteristics of cellular
or satellite systems and serves as the fundamental building
block for more general networks.

Fig. 2. A single source broadcasting to N receivers over erasure channels
with probability of erasure, p in each time slot.

In particular, we consider a single source node, S, broadcast-
ing an infinite backlog of data to N receivers over independent
time-varying erasure channels. The data is encapsulated into
packets, each represented as a vector of length m over a finite
field Fd. We assume a time-slotted operation of the system
with Ci[t] ∈ {0, 1} denoting the state of user is channel in slot
t. We model Ci[t] as a Bernoulli random variable with p being
the probability that Ci[t] = 0 in any given time slot t. For
simplicity, we assume that all channels are independent and
identically distributed in our analysis for ease of exposition.
A single packet may be broadcast in each time slot by the
source and the transmission to the ith user is successful only
if Ci[t] = 1.

We consider the class of block coding strategies employed
by the source, where data is transferred in blocks of K packets.
Specifically, the source can start transmitting the next block
only if the previous block is successfully transferred to all N
receivers. Moreover, we focus on the Random Linear Network
Coding (RLNC) strategy that is defined next.

Definition 1 (Random Linear Network Coding (RLNC)):
In each time slot, the source transmits a random linear

combination of the K packets in the Head-of-line (HOL)
coding block (see Figure 2). In what follows, we refer to K
as the coding window (or block) size of RLNC.

Using random linear coding arguments introduced by Ho
et al. [8], for a large enough field size d, it is sufficient
for the receivers to receive approximately K coded packets
to be able to decode the block. It has been shown in [9]
that random linear network coding is capacity achieving for
multicast connections in an unreliable network setting as long
as packets received on a link arrive according to a process that
has an average rate. That is, for K sufficiently large, under the
coding scheme defined in Definition 1, the (broadcast) capacity
of our system is (1− p).

Next, we define the two metrics of interest in our analysis,
namely throughput and decoding-delay.

Definition 2 (Decoding-Delay): We let Yi(K) denote the
number of time slots it takes for the ith receiver to decode
a block of K packets under the RLNC scheme. Under the
erasure channel model, it is easy to see that Yi(K) is a negative
binomial random variables of order K. Then, the decoding
delay for a given N and K under the RLNC scheme, denoted
as Z(N, K), is the time required to transmit all packets of the
head-of-line (HOL) block to all the receivers. Hence, we have

Z(N, K) = max
1≤i≤N

Yi(K), (1)

Definition 3 ((Broadcast) Throughput): We denote the
number of packets transmitted by the source in a total of t
slots by R(t). Then, the (broadcast) throughput for a given
N and K under RLNC scheme, denoted as E[R(N, K)], is
the long-term average number of successfully transferred data
packets to all N receivers. Hence, from ergodicity, we have

E[R(N, K)] = lim
t→∞

R(t)
t

. (2)

The block transmission structure together with the indepen-
dence of channel states across time allows us to model the
RLNC operation as a renewal process with renewals at the
start of each coding block formation. Hence, by defining a
constant reward of K acquired in each renewal interval, we
can utilize the main result from renewal theory [10] to write:

E[R(N,K)] = lim
t→∞

R(t)
t

=
K

E[Z(N, K)]
(3)

It is known that (e.g. [6]) the exact expression for
E[Z(N, K)] is as follows,

E[Z(N, K)] = K+
t=∞∑

t=K

[
1−

(
τ=t∑

τ=K

(
τ − 1
K − 1

)
p(τ−K)qK

)N]
,

where
(

n
m

)
gives the number of size m combinations of n

elements and q , (1− p).
It can be seen from the above expression that, when K

is a constant independent of N , the mean decoding de-
lay E[Z(N,K)] increases with N . Thus, for any fixed K,
E[R(N, K)] in (3) goes to zero as N approaches ∞.

However, the exact expression for the mean decoding delay



is difficult to simplify further and does not provide any
additional insight. This motivates us to study an approximation
of the system performance that is later observed to be accurate.

IV. THROUGHPUT AND DELAY ESTIMATION OF RLNC

In this section, we define an approximation to the system of
Section III and derive upper and lower bounds on the decoding
delay and throughput of this new system. This enables us to
understand the scaling of the coding window size with the
number of receivers to guarantee a non vanishing throughput
as the original system becomes large.

Let Y (K) be a negative binomial random variable with
mean µ(K) = K

1−p and variance σ2(K) = K p
(1−p)2 . Define

Ỹ (K) = (Y (K) − µ(K))/σ(K). It is well known that if
Y (K) is a negative binomial random variable of order K and
success probability (1− p), then

Y (K) =
K∑

i=1

Xi, (4)

where Xi, i = 1, 2, . . . ,K is a sequence of independent
geometric random variables with success probability 1− p.

Hence one can invoke the central limit theorem for i.i.d.
sequences which states that Ỹ (K) converges weakly to χ as
K →∞ where χ has the standard normal distribution.

Noting the above convergence in distribution, we define
a new system by replacing the negative binomial random
variables with normal random variables in the original system.
We expect that decoding delay and throughput of the new
system would be a close approximation to that of RLNC, as
will be confirmed in Section V.

Definition 4 (Approximate decoding-delay and throughput):
We define approximate decoding delay Z̃(N, K) and
approximate throughput E[R̃(N,K)] as follows,

Z̃(N,K) =
K

1− p
+
√

Kp

1− p
max

1≤i≤N
χ̃i, (5)

E[R̃(N, K)] =
K

E[Z̃(N, K)]
, (6)

where χ̃i, i = 1, 2, . . . , N are independent standard normal
random variables.
Then, the main result of this paper is provided next:

Theorem 1: The approximate throughput E[R̃(N, K)]
shows the following behavior:

1) When K = o(ln(N)), then E[R̃(N, K)] goes to zero as
N approaches ∞.

2) When K = Θ(ln(N)), then E[R̃(N,K)] approaches a
constant fraction of (1− p) as N approaches ∞.

3) When K = ω(ln(N)), then E[R̃(N,K)] approaches
(1− p) as N approaches ∞.

In order to prove the above theorem, we establish upper and
lower bounds on the E[ max

1≤i≤N
χ̃i] in the following lemmas:

Lemma 1: For any t > 0 and standard normal random
variables χ̃i, i = 1, 2, . . . , N , we have that

E[ max
1≤i≤N

χ̃i] ≤ 1
t

(
ln(N) +

t2

2

)
(7)

The right-hand-side of inequality (7) can be minimized to get
a better lower bound on E[max1≤i≤N χ̃i] given by

E[ max
1≤i≤N

χ̃i] ≤
√

2 ln(N) (8)

and the minimizing value of t, denoted by t∗, is given by,

t∗ =
√

2 ln(N) (9)

Proof: For any y1, . . . , yN and t > 0,

max(y1, . . . , yN ) =
1
t
(ln(max(ety1 , . . . , etyN )))

≤ 1
t
(ln(ety1 + . . . + etyN ))

Therefore, for standard normal random variables Ỹ1, . . . , ỸN ,

E[ max
1≤i≤N

χ̃i] ≤ 1
t
E[ln(etχ̃1 + . . . + etχ̃N )]

≤ 1
t
(ln(E[etχ̃1 + . . . + etχ̃N ]))

=
1
t
(ln(N) + ln(E[etχ̃1 ]))

=
1
t

(
ln(N) +

t2

2

)

Lemma 1 is similar to the Lemma 2 in [?] which states that
given X1, . . . , XN i.i.d random variables, for any t > 0,
E[maxX1, . . . , XN ] ≤ 1

t (ln(N) + ln(E[etX1 ])). We use this
inequality in the case of standard normal random variables
and optimize the upper bound by minimizing with respect to
t noting that the moment generating function of the standard
normal random variables converges for all t > 0.

Lemma 2: Let χ̃i, i = 1, 2, . . . , N be a sequence of i.i.d.
standard normal random variables. There exists a universal
constant 0 < C ≤ √

2 such that

E[ max
1≤i≤N

χ̃i] ≥ C
√

ln(N) (10)

Proof: The proof of (10) follows from [11], Lemma
(4.10). The fact that C ≤ √

2 follows from the upper bound
from Lemma 1 that C ≤ √

2

Proof: (Proof of the theorem) From Lemma 1 and Lemma
2, we have that, for some 0 < C ≤ √

2 :

K

1− p
+

√
CKp ln(N)

1− p
≤ E[Z̃(N,K)] (11)

≤ K

1− p
+

√
2Kp ln(N)

1− p



And,

(1− p)

[
1 +

√
2p ln(N)√
K(1− p)

]−1

≤ E[R̃(N, K)] (12)

≤ (1− p)

[
1 +

√
Cp ln(N)√
K(1− p)

]−1

Theorem 1 then follows from the definition of the approximate
throughput and the above inequalities.

V. NUMERICAL RESULTS

In this section, we provide extensive numerical results to
compare the behavior of the approximate system studied in
Section IV to that of the RLNC in an actual system. Our
results uniformly suggest the accuracy of the approximation
and the applicability of the upper and lower bounds of the
approximation to the actual system behavior.

As a representative setup, we let the OFF probability of
erasure channels p to be 0.1. We note that the scaling behavior
of the throughput and decoding-delay do not change for any
other choice of p. Also, note that the broadcast capacity for
this choice of p is (1 − p) = 0.9. Our numerical results are
presented under two different scenarios, the first focusing on
confirming the phase transition of the throughput scaling, and
the second focusing on confirming the applicability of lower
and upper bounds obtained in Theorem 1.
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Fig. 3. Throughput behavior under different scalings of K with N.

Study 1) Phase transition: In this study, we explore the phase
transition law that is suggested by Theorem 1. To that end, Fig-
ure 3 depicts the mean (broadcast) throughput of RLNC in the
actual system operation with increasing N for different types
of scaling of K. We see that this result is in perfect agreement
with the phase transition law: when K = 150 and therefore
scales slower than ln(N), we see that the throughput decays
towards zero; when K = 50 ln(N), i.e. K = Θ(ln(N)),
the throughput converges to a constant level as suggested by
the approximate analysis; when K = 10 ln2(N) or N, i.e.
K = ω(ln(N)), the throughput increases toward the broadcast

capacity. The latter two results also reveal that the converge
rate the performance to the capacity may be increased by
selecting a faster scaling of K with respect to N .

Thus, Study 1 confirms the phase transition law suggested
by the approximate analysis. The next study is aimed at
studying the accuracy of the lower and upper bounds in the
proof of Theorem 1 (c.f. (11) and (12)) for different scalings
of K with N .
Study 2) Lower and upper bounds: Here, we consider
two different scalings of K with respect to N , and compare
both the throughput and the decoding-delay performance of
the actual system behavior to the system performance under
the Gaussian approximation, and to the lower and upper
bounds (11) and (12) obtained for the approximate system.
In particular, we study the cases when K = 50 ln(N) and
K = N, which are already demonstrated in Figure 3 to
converge to a constant and to 0.9, respectively.
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Fig. 4. Comparing Actual Throughput to Obtained Upper and Lower Bounds
for p = 0.1 and K = 50 ln(N)
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Fig. 5. Comparing Actual Mean Completion Time to Obtained Upper and
Lower Bounds for p = 0.1 and K = 50 ln(N)

Figures 4 and 5 respectively depict the throughput and
decoding-delay performance with K = 50 ln(N) of the actual



system behavior together with the approximation and the
lower and upper bounds. These demonstrate both the tightness
the lower and upper bounds and the fact that the actual
system performance is also bounded by them. We also see
that a throughput of approximately 0.85 is achievable with
this scaling, leading to a decoding delay that scales only
logarithmically with the network size.
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Fig. 6. Comparing Actual Throughput to Obtained Upper and Lower Bounds
for p = 0.1 and K = N
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Fig. 7. Comparing Actual Mean Completion Time to Obtained Upper and
Lower Bounds for p = 0.1 and K = N

In comparison, Figures 6 and 7, respectively, depict the
throughput and decoding-delay performance of the actual and
approximate systems when K = N along with the bounds.
Again, we observe that the bounds are tight and are applicable
to the actual system performance, as predicted. In this fast
scaling scenario, we also observe that the throughput increases
towards the capacity of 0.9 instead of converging to a constant
level as in Figure 4. Yet, this asymptotic optimality occurs at
the cost of linearly increasing decoding-delay performance.

Overall, these numerical studies collectively confirm the
accuracy of estimating the RLNC performance using the
Gaussian approximations. The rigorous proof of this result

is part of our future research. This connection to a tractable
formulation is expected to be of paramount importance in the
further analysis and the extension of these results to more
involved setups.

VI. CONCLUSIONS

We have investigated the throughput and decoding delay
performance of RLNC in a wireless broadcast setting as
the coding window size K scales as N . We noted that the
broadcast throughput of RLNC vanishes for any fixed K as
the system size increases. Hence, it is important to understand
the scaling of K as a function of N that will guarantee a non-
vanishing throughput. To this end, we defined an approximate
system by appealing to the central limit theorem and replacing
the negative binomial random variables in the analysis of
decoding delay with normal random variables.

Our analysis revealed a phase transition in the performance
of the approximate system, namely, if K increases slower than
ln(N), the throughput goes to zero as N increases. However,
on increasing K faster than ln(N), the throughput approaches
the maximum achievable broadcast throughput of (1-p). Also,
K = Θ(ln(N)) ensures a constant fraction of the maximum
achievable broadcast throughput for the approximate system.

We have shown through numerical results that our analysis
closely approximates the original system and in fact, the
performance of the original system exhibits a phase transition
indicating that our results apply to the original system as well.
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