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Correction to “Exploiting Channel Memory for
Joint Estimation and Scheduling in Downlink
Networks - a Whittles Indexability Analysis”

Wenzhuo Ouyang, Sugumar Murugesan, Atilla Eryilmaz, Ness B. Shroff

In the above paper [1], in Proposition 2, case (iii), it was argued that since reward functions V 0
ω (π) and V 1

ω (π) are convex
with inequality orders reversed at the ends of the support space: π ∈ [0, 1], they must intersect only once. In general, however,
we may carefully construct pairs of convex functions such as (x2, x2 − sin(x)) that intersect multiple times.

In this addendum, we address this and make rigorous the proof of Proposition 2, case (iii) for a certain class of scheduling
system parameters and conjecture that the uniqueness of intersection holds for general cases as well.

I. PRELIMINARIES

The reward functions in the Whittle’s indexability framework are recalled from [1] first. Total reward upon ‘idle’ action in
current slot and optimal actions in future slots is given by,

V 0
ω (π) = ω + βVω(Q(π)).

Total reward upon ‘transmit’ action in current slot and optimal actions in future slots is given by,

V 1
ω (π) = R(π) + β[πVω(p) + (1− π)Vω(r)],

where, recall from [1] that, Q(π) = π(p − r) + r is the belief-evolution function; R(π) is the immediate reward; p, r are
Markov channel parameters; ω is the subsidy for idle decision and β is the discount factor.

II. ASSUMPTIONS

We consider a class of scheduling system parameters that satisfy the following assumptions.
1. The channels are positively correlated, i.e., pi > ri for each user i in the original multi-user scheduling problem. For ease

of exposition, we drop the subscript i in the following.
2. Immediate reward R(π) has the following structural properties. For any π1, π2 such that 0 ≤ π1 < π2 ≤ 1,

a. R(π2) > R(π1), i.e., R(π) strictly increases in π.
b. R(π2) − R(π1) > β(R(Q(π2)) − R(Q(π1))). This is contraction mapping with Q(π) = (p − r)π + r being the

contraction or contractor on metric space π ∈ [0, 1], with distance measure d(π2, π1) =
∣∣R(π2)−R(π1)∣∣.

Comments on the Assumptions:
We now discuss the implications and prevalence of scheduling systems that satisfy Assumption 1-2.
Assumption 1: This covers a large class of fading channels where channel condition can be expected to evolve in a smooth

fashion across time-slots. Assumption 2a: Note that from Lemma 1(a) in [1], R(π) is already proven to be an increasing function
of π. We have added the strict monotonicity in this assumption. This is also intuitive and expected to cover a large class of
estimator - rate adapter pairs, as any increase in belief, π, can be expected to translate to a non-zero increase in the immediate
reward. Assumption 2b: R(π) is established to be convex in Lemma 1(a) in[1]. Recall that π0 denotes the steady state probability
of being in state h. Thus for 0 ≤ π0 < π1 < π2 ≤ 1, it is directly shown that R(π1) − R(π2) > β(R(Q(π1)) − R(Q(π2))),
since π1 − π2 > Q(π1)−Q(π2), π2 > Q(π2), π1 > Q(π1). The assumption covers the remaining pairs of (π1, π2) , thereby
imposing a contraction mapping on a measure of R(π).
Existence of Estimator - Rate Adapter Pairs:

We will now demonstrate that there exists estimator - rate adapter pairs that satisfy Assumption 2b. We proceed to construct
one such estimator - rate adapter pair. Note from Lemma 1 in [1] that, R(π) is a point-wise maximum over a family of
linear functions, each of which represent the immediate reward of a unique estimator-rate adapter pair. Construct an cumulative
estimator - rate adapter pair Uc(π) such that

Uc(π) =

{
u0(π), if π ∈ [0, π0].

u∗(π), if π ∈ (π0, 1].
(1)
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where π0 is the steady state probability of channel being in high-state. u0(π) is a unique estimator - rate adapter pair that is
linear and monotonically increasing in π. This could be chosen with an objective such as: maximize immediate reward for π
close to 0. Further, u∗(π) is the optimal estimator - rate adapter pair at π. Now consider the following 3 cases for the pair
(π1, π2).

• Case 1. 0 ≤ π1 < π2 ≤ π0: Since Uc(π) = u0(π) in this range of π, we have Uc(π) is linear and strictly increasing in π
within which contraction mapping in Assumption 2b strictly holds.

• Case 2. 0 ≤ π1 ≤ π0 < π2: It is easily shown that Q(π1) ∈ [π1, π
0] and Q(π2) ∈ (π0, π2]. Along with the fact that R(π)

is strictly increasing in π, ontraction mapping in Assumption 2b is established.
• Case 3. 0 ≤ π0 ≤ π1 < π2 ≤ 1: As noted within Assumption 2b, the contraction mapping readily holds for this case

using Lemma 1a in [1].
This demonstrates the existence of estimator - rate adapter pairs that satisfy Assumption 2b.
We now proceed with the proof.

III. CLAIM

Reward functions V 0
ω (π) and V 1

ω (π) intersect at most once in the region π ∈ [0, 1] under Assumptions 1 and 2.

Proof Approach:
We prove the claim by contradiction. Suppose there are multiple intersections, denoted as π1, π2, · · · , πn with 0 ≤ π1 <

π2 < · · · < πn ≤ 1 and n ≥ 3, we prove the Claim by considering the following four exhaustive cases based on steady
state probability, π0. Note that if there are more than one intersections, there must be at least three intersections since the
relationship of V 0

ω (π) and V 1
ω (π) is reversed at the end points 0 and 1 as established in Proposition 2 in [1].

• Case 1: The value of π0 is less than all intersections, i.e., 0 ≤ π0 < π1.
• Case 2: The value of π1 ≤ π0 < πn, and π0 is within active region, i.e., V 1

ω (π
0) > V 0

ω (π
0) if π0 /∈ {π1, π2, · · · , πn};

V 1
ω (π

0) = V 0
ω (π

0) if π0 ∈ {π1, π2, · · · , πn}
• Case 3: The value of π1 ≤ π0 < πn, and π0 is within idle region, i.e., V 1

ω (π
0) < V 0

ω (π
0) if π0 /∈ {π1, π2, · · · , πn};

V 1
ω (π

0) = V 0
ω (π

0) if π0 ∈ {π1, π2, · · · , πn}
• Case 4: The value of π0 is greater than all intersections, i.e., π0 ≥ πn.
First, we establish the following structural property of reward functions.

Lemma 1.

Vω(πa) ≥ Vω(πb) ∀ πa > πb

V 1
ω (πa) > V 1

ω (πb) ∀ πa > πb

Proof. Similar to the proof of Proposition 1 in [1], we let Ṽω,t(π) be the optimal reward function at time t for M -stage finite
horizon problem. Similarly, let V̂ 1

ω,t(π) (or V̂ 0
ω,t(π)) be the reward function upon transmit (or idle) and then optimal decisions

for the M -stage finite horizon problem, and let V̂ 1
ω,t(π) be the corresponding reward at time t.

Then at time M , the Lemma holds since Ṽω,M (πa) = R(πa) > R(πb) = Ṽω,M (πb). Similarly, V̂ 1
ω,M (πa) = R(πa) >

R(πb) = V̂ 1
ω,M (πb). Here R(πa) > R(πb) follows from Assumption 2a.

Suppose at time t, Ṽω,t(πa) ≥ Ṽω,t(πb) and V̂ 1
ω,t(πa) > V̂ 1

ω,t(πb).
Then at time t− 1, we have Ṽω,t−1(π) = max{V̂ 0

ω,t−1(π), V̂
1
ω,t−1(π)}, where

V̂ 0
ω,t−1(π) = ω + βṼω,t(pπ + (1− π)r)
V̂ 1
ω,t−1(π) = R(π) + β · [πṼω,t(p) + (1− π)V̂ω,t(r)]

= R(π) + β · [π[Ṽω,t(p)− Ṽω,t(r)] + Ṽω,t(r)]

Note that since (p− r)π increases with π and Ṽω,t(π) increases with π (induction), we have V̂ 0
ω,t−1(π) increases with π.

Since R(π) strictly increases with π (from Assumption 2a) and π[Ṽω,t(p)− Ṽω,t(r)] increases with π (induction), we have
V̂ 1
ω,t−1(π) strictly increases with π.
Therefore Ṽω,t−1(π) increases with π as maximum of two increasing functions of π. Using induction on V̂ 1

ω,t(π) and Ṽω,t(π),
the lemma is thus established.

Recall from proof of Proposition 1 in [1], the following relation between V 0
ω (π) and V 1

ω (π) at extremes of belief values:

V 0
ω (0) > V 1

ω (0)

V 0
ω (1) < V 1

ω (1) (2)



3

Thus, with π1, π2, · · · , πn indicating the multiple intersections, we have

V 0
ω (π) > V 1

ω (π),∀π ∈ [0, π1)

V 0
ω (π) < V 1

ω (π),∀π ∈ (πn, 1]. (3)

IV. CASE 1

In this case, all the intersections of V 0
ω (π) and V 1

ω (π) are greater than π0. We then have π0 < π1 < π2 < · · · .
Note that at the first intersection π1 we have V 0

ω (π) = V 1
ω (π) and

V 0
ω (π1) = ω + βω + β2ω + · · · = ω

1− β
(4)

V 1
ω (π1) = R(π1) + β · [π1Vω(p) + (1− π1)Vω(r)], (5)

where the expression of V 0
ω (π1) holds because if it is optimal to stay idle at π1 at one slot, then it will be optimal to stay idle

forever since Qk(π1) < π1 and from (3) it is also in idle region for k ≥ 1.
At the second intersection π2, we discuss the following two sub-cases.
(Case 1.1). Q(π2) is within idle region. Then we have V 0

ω (π2) = V 1
ω (π2) and

V 0
ω (π2) =

ω

1− β
, (6)

V 1
ω (π2) = R(π2) + β · [π2Vω(p) + (1− π2)Vω(r)]. (7)

where the expression of V 0
ω (π2) holds because if Q(π2) is in idle region, then Qk(π2) is also in idle region for k ≥ 0.

From (4) and (6)we have V 0
ω (π1) = V 0

ω (π2). Since both π1 and π2 are at the intersection of V 0
ω (π) and V 1

ω (π), we have
V 0
ω (π1) = V 1

ω (π1) and V 0
ω (π2) = V 1

ω (π2). We hence have V 1
ω (π1) = V 1

ω (π2). This contradicts the result of Lemma 1 that
V 1
ω (π) strictly increases with π. Thus this case is not feasible.
(Case 1.2.) Q(π2) is within active region. Then there must exist another π3 such that Q(π3) is within the active region as

well and π1 < π3 < π2. Therefore

V 0
ω (π2) =ω + β · V 1

ω (Q(π2)) (8)

V 1
ω (π2) =R(π2) + β · [π2Vω(p) + (1− π2)Vω(r)], (9)

with V 0
ω (π2) = V 1

ω (π2). Also, at π3 we have

V 0
ω (π3) = ω + β · V 1

ω (Q(π3)) (10)

V 1
ω (π3) = R(π3) + β · [π3Vω(p) + (1− π3)Vω(r)], (11)

with V 0
ω (π3) < V 1

ω (π3) since π3 is in active region. From (9) and (11)

V 1
ω (π2)− V 1

ω (π3) = R(π2)−R(π3) + β[(π2 − π3)(Vω(p)− Vω(r))]. (12)

Also from (8) and (10) we have

V 0
ω (π2)− V 0

ω (π3) =βV
1
ω (Q(π2))− βV 1

ω (Q(π3))

=β[R(Q(π2))−R(Q(π3))] + β[Q(π2)−Q(π3)][Vω(p)− Vω(r)], (13)

Since π2 − π3 > Q(π2)−Q(π3) = (p− r)(π2 − π3) and R(π2)−R(π3) > R(Q(π2))−R(Q(π3)), from (12) and (13) we
have V 1

ω (π2)− V 1
ω (π3) > V 0

ω (π2)− V 0
ω (π3). Therefore V 1

ω (π3)− V 0
ω (π3) < V 1

ω (π2)− V 0
ω (π2) = 0. Thus V 1

ω (π3) < V 0
ω (π3).

This contradicts the fact that π3 belongs to the active region. Thus this case is not feasible.

V. CASE 2

Suppose π0 is within active region and πk ≤ π0 < πk+1 for some 1 ≤ k < n where V 1
ω (π

0) > V 0
ω (π

0). Next consider π̃ such
that πk+1 < π̃ < πk+2, i.e., π̃ is in the immediate idle interval greater than π0. Note that ∃ π̃ such that π0 < Q(π̃) < πk+1.
Thus Q(π̃) is in active region. We hence have

V 1
ω (π̃) = R(π̃) + β · [π̃Vω(p) + (1− π̃)Vω(r)] (14)

V 0
ω (π̃) = ω + β

[
R(Q(π̃)) + β[Q(π̃)Vω(p) +

(
1−Q(π̃)

)
Vω(r)]

]
(15)

We present the following lemma.
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Lemma 2.

βπ̃[Vω(p)− Vω(r)]− β2[Q(π̃) · [Vω(p)− Vω(r)]]
≤βπ0[Vω(p)− Vω(r)]− β2π0[Vω(p)− Vω(r)].

Proof. Rearranging terms we have

β[Vω(p)− Vω(r)][π̃ − π0] ≥ β2[Vω(p)− Vω(r)][Q(π̃)− π0],

which holds since Vω(p) ≥ Vω(r) and π̃ > Q(π̃).

From (14) and (15) we have,

V 1
ω (π̃)− V 0

ω (π̃)

=R(π̃) + β · [π̃Vω(p) + (1− π̃)Vω(r)]

−
[
ω + β

[
R(Q(π̃)) + β · [R(Q(π̃))Vω(p) +

(
1−R(Q(π̃))

)
Vω(r)]

]]
=R(π̃)− βR(Q(π̃)) + β[Vω(p)− Vω(r)](π̃ − βQ(π̃)) + βVω(r)− ω − β2Vω(r)

>R(π̃)− βR(π̃) + β[Vω(p)− Vω(r)](π̃ − βQ(π̃)) + βVω(r)− ω − β2Vω(r)

>R(π0)− βR(π0) + β[Vω(p)− Vω(r)](π0 − βQ(π0)) + βVω(r)− ω − β2Vω(r)

=R(π0) + β[π0Vω(p)− (1− π0)Vω(r)]−
[
ω + β

[
R(π0) + β[π0Vω(p) + (1− π0)Vω(r)]

]]
=V 1

ω (π
0)− V 0

ω (π
0)

≥0,

where the first inequality holds since Q(π̃) < π̃ and hence R(Q(π̃)) < R(π̃) from Lemma 1. The second inequality holds
because π̃ > π0 and hence R(π̃) > R(π0) and π̃ − βQ(π̃) > π0 − βQ(π0). The last inequality holds because π0 is within
the active region. In fact, if π0 > πk, we have V 1

ω (π̃)− V 0
ω (π̃) > 0 and if π0 = πk, we have V 1

ω (π̃)− V 0
ω (π̃) = 0. The above

expressions contradict with the assumption that π̃ is strictly within idle region, i.e., V 1
ω (π̃) < V 0

ω (π̃). This contradiction makes
this case infeasible.

VI. CASE 3

Suppose πk ≤ π0 < πk+1, k ≥ 1, and π0 is within idle region. Note that for all belief values π in the interval [πk, πk+1],
we have

V 0
ω (π) = ω + βω + β2ω + · · · = ω

1− β
, (16)

since Qk(π) is in idle region.
In contrast, from Lemma 1, V 1

ω (π) strictly increases in that region. We hence have V 1
ω (πk+1) > V 1

ω (πk). Note that at
πk and πk+1, we have V 0

ω (πk) = V 1
ω (πk+1) and V 1

ω (πk) = V 0
ω (πk). Therefore V 1

ω (πk+1) = V 1
ω (πk), which contradicts

V 1
ω (πk+1) > V 1

ω (πk). This contraction makes this case infeasible.

VII. CASE 4

We suppose π0 is to the right of all intersections, i.e., π0 ≥ πn > πn−1 > · · · . Therefore we have

V 0
ω (πn) = ω + β

[
R(πn) + β[Q(πn)Vω(p) + (1−Q(πn))Vω(r)]

]
(17)

V 1
ω (πn) = R(πn) + β · [πnVω(p) + (1− πn)Vω(r)], (18)

where 17 holds since Q(πn) > πn and from (3) it is in active region. Since V 0
ω (πn) = V 1

ω (πn), we have

ω = R(πn)− βR(Q(πn)) + β[Vω(p)− Vω(r)](πn − βQ(πn)) + β(1− β)Vω(r) (19)

Consider π̂ ∈ (πn−2, πn−1), i.e., π̂ is in an active region. We have

V 1
ω (π̂) = R(π̂) + β · [π̂Vω(p) + (1− π̂)Vω(r)],
V 0
ω (π̂) = ω + βVω(Q(π̂))

≥ ω + β
[
R(Q(π̂)) + β[Q(π̂)Vω(p) + (1−Q(π̂))Vω(r)]

]
where the last inequality is because the reward obtained by idle followed by optimal decisions is better than the reward obtained
by idle followed by an active decision.
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Since V 1
ω (π̂) > V 0

ω (π̂), we have

ω < R(π̂)− βR(Q(π̂)) + β[Vω(p)− Vω(r)](π̂ − βQ(π̂)) + β(1− β)Vω(r)
< R(π̂)− βR(Q(π̂)) + β[Vω(p)− Vω(r)](πn − βQ(πn)) + β(1− β)Vω(r)
< R(πn)− βR(Q(πn)) + β[Vω(p)− Vω(r)](πn − βQ(πn)) + β(1− β)Vω(r)

(20)

where the second inequality comes from

πn − βQ(πn) > π̂ − βQ(π̂), (21)

since, with πn > π̂,

[πn − βQ(πn)]− [π̂ − βQ(π̂)] = (1− (p− r))(πn − π̂) > 0.

The last inequality in (20) uses Assumption 2b: R(πn)−R(π̂) > βR(Q(πn))− βR(Q(π̂)). Considering (20), we have

ω < R(πn)− βR(Q(πn)) + β[Vω(p)− Vω(r)](πn − βQ(πn)) + β(1− β)Vω(r)
= ω

where the last equality follows from (19). Thus we have the contradiction ω > ω, making this case infeasible.
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