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Abstract—We introduce a new optimization framework, built
over a discounted-rate metric, that captures the sensitivities of
wireless users to time-variations in their fairness measure of
rate allocations. The resulting, so-called, Discounted-Rate Util-
ity Maximization (DRUM) formulation not only accommodates
traditional long-term and less-explored instant fairness concepts
in its extremes, but also encompasses all intermediate degrees of
sensitivity to fluctuations in the users’ rate allocations.

After introducing the versatile DRUM formulation, we fully
characterize its solution in the instantly-fair and long-term-fair
extremes for the general class of ω-weighted α-fair utility func-
tions. These solutions reveal the non-trivial impact of fading
channel statistics and the utility function parameters on the rate
allocations, even under perfectly symmetric network conditions.
In particular, we demonstrate that the rate allocations lie between
the maximum and the harmonic mean of the fading-channel rates.

To achieve rates in-between these extremes, we also address the
general solution of DRUM by proposing a novel low-complexity
dynamic rate allocation algorithm that does not require the
knowledge of the channel statistics. This algorithm is proven to
achieve the optimal performance of the instantly-fair and long-
term-fair solutions as the discount parameter approaches its lower
and upper limits, respectively. We also study the fairness and rate
allocation characteristics of our algorithm for intermediate values
of the discount parameter in a Rayleigh-Fading environment.

I. INTRODUCTION

Fair allocation of shared resources in a multi-user communi-
cation system has been a topic of great interest and activity
over decades. The core objective of these efforts has been
to obtain comprehensive models and systematic means for
sharing heterogeneous resources amongst multiple users so
that each user is satisfied (according to varying concepts of
“satisfaction”) with its relative share in the long-run. This paper
releases this implicit assumption on the long-term measure of
fairness in order to accommodate varying degrees of short-term
sensitivities of users to their received share.

Initial breakthroughs in the well-founded formulation and
systematic solution of the fair resource allocation problem
has been made in the seminal works of [1], [2] (see [3] for
more references). These works formulated the problem of fair
resource allocation in wired communication networks, with
Internet in mind, through a static utility optimization problem
subject to link capacity constraints. Through the use of dual
optimization methods, they have also developed decentralized
rate allocation (also called, congestion control) and scheduling
strategies that converge to the optimal fair allocation. The
unifying work of [4] expanded the reach of this approach by

introducing a common class of, so called, ω-weighted α-fair
utility functions (cf. (6)) that encapsulates all important fairness
concepts, including proportional fairness, MaxMin fairness,
sum-rate fairness (cf. Def. 2) within a common formulation.

This comprehensive mathematical optimization framework
for fair allocation is later embraced by the wireless networking
research community in the fruitful development of efficient and
fair allocation of wireless network resources (see, for example,
[5], [6], [7], [8], [9]). These, and many subsequent works have
unified previously-designed queue-length-based backpressure
routing and max-weight scheduling strategies (developed in
the seminal works of [10], [11]) with the fair rate allocation
framework under the common umbrella of Network Utility
Maximization (NUM) [12], also called Cross-Layer Design [13]
or Stochastic Network Optimization [14] in different contexts.

These works have revealed that queue-lengths in the previous
works can be viewed as Lagrange multipliers of related con-
straints of an associated static utility maximization problem,
and vice versa. This revelation has led to many interesting
follow-up efforts, which are still very active today, that utilize
this connection to develop new adaptive policies by intro-
ducing different queue-lengths and virtual queue-lengths that
accommodate new constraints of interest, such as reliability
constraints, delay constraints, deadline constraints, etc.

However, throughout this development the measure of fair-
ness in the utility function has remained to be based on long-
term average rates. While this may be an acceptable measure
in a wired communication network whereby the resources are
essentially static, it is no longer the case in mobile wireless
networks whereby resources are time-varying and possibly
highly heterogeneous. Since the mobile users will be subject
to time-varying channel conditions, their measure of fairness
will typically depend on their rates in the short-run rather than
the long-run. With increasingly mobile and increasingly delay-
sensitive applications in the horizon, therefore, it is essential
that the fair resource allocation framework in wireless networks
accommodates varying delay-sensitivities into its formulation
and solution. In this work, we addresses this need as follows:

• We introduce (cf. Section II) a Discounted-Rate Utility
Maximization (DRUM) formulation that uses β-discounted
user rates. DRUM not only encapsulates NUM as a special
case but also extends it significantly by allowing different
degrees of sensitivity to time-variations in the user rates.
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Fig. 1. Channel fading and rate allocation model for a two-user setting: In each fading-block t of duration D seconds, the maximum achievable rate Cn[t] for
each user n ∈ {1, 2} is randomly realized from its corresponding set Cn , {c1n, · · · , c

Kn
n } of rates according to a distribution pn , {p1n, · · · , p

Kn
n }. This

determines the achievable rate region RC[t] for the block, from which individual rates r[t] = (r1[t], r2[t]) can be allocated to individual users. These rates are
achieved through a time-sharing strategy whereby ρn[t] determines the fraction of the block allocated to user n, as illustrated in slots t and t+ 1.

• We fully characterize (cf. Section III) the solutions of DRUM
for the two extremes of so-called long-term fair and instantly
fair allocations for the general class of ω-weighted α-fair
utility functions, and also explicitly describe the impact of
channel statistics on these allocations.

• We develop (cf. Section IV) a novel Dynamic-DRUM (D-
DRUM) Algorithm for solving the DRUM problem not only
at the extremes of β ∈ {0, 1} but for the general case of any
β ∈ [0, 1). We then prove that D-DRUM achieves the optimal
instantly-fair and long-term-fair allocations at the extremes
of β = 0 and β ↑ 1, and show that it stably spans rates in
between these extremes with intermediate choices of β.

• We present (cf. Section V) comprehensive investigations
of the performance characteristics of the Dynamic DRUM
Algorithm that go beyond average rates. In particular, we
present several interesting observations on the distribution
of, correlation between individual user rates with varying β.
Throughout the paper, we consistently denote: random vari-

ables with upper-case letters, e.g., X; realizations with lower-
case letters, e.g., x; sets with script letters, e.g., X ; vectors with
boldface letters, e.g, X or x; component-wise inequalities with
� and �; and the non-negative real numbers with R+.

II. SYSTEM MODEL AND DRUM PROBLEM FORMULATION

A. Channel and Network Model

We consider the service of N users over wireless fading
channels which are block-fading in time (see Fig. 1). For each
user, the channel state is constant over blocks of duration of
D seconds that are synchronized among all users so that the

network operates in a common slotted time t aligned with these
blocks. While the results of this work hold when the channel
states are dependent across users and dependent but ergodic
over time, for simplicity of exposition, we will assume that
channel states change independently from one block to the next.

User n ∈ {1, · · · , N} has a set of Kn possible non-negative-
valued channel states Cn , {c1n, · · · , cKnn } which are observed
with corresponding probabilities pn , {p1n, · · · , pKnn }. In par-
ticular, the channel state of user n at time t is a random variable
Cn[t] ∈ Cn with distribution pn, i.e., Pr(Cn[t] = ckn) = pkn,
and indicates the maximum achievable rate for that user in that
block. Without loss of generality, we assume that E[Cn] > 0,
since otherwise we can omit such a user from the network.

The network state at time t is given by the realizations of
all user states at that time, i.e., C[t] , (C1[t], · · · , CN [t]) ∈
C ,

∏N
n=1 Cn where

∏ · indicates the Cartesian product of
sets. Hence, a given network state c , (c1, · · · , cN ) ∈ C is
observed with p.m.f. π , (πc)c, where πc , Pr(C[t] = c).

B. Instantaneous and Average Achievable Rate Regions

The channel state of a user indicates the highest rate that
can be achieved during the given block duration, if the channel
is used by that user alone. If multiple users are utilizing the
channel simultaneously, interference prevents either user from
achieving their highest rate. In that case, we consider a time-
sharing in which users access the channel at disjoint sub-
intervals of the block duration. While time-sharing is a com-
monly used strategy and allows us to get closed-form solutions
to various optimization problems in the sequel, we note that



it is also possible to accommodate more sophisticated multi-
access rate regions with efficient allocation strategies as in [15].
If user n utilizes the channel during a ρn[t] fraction of the
block t, it can achieve a maximum rate of Rn[t] = ρn[t]Cn[t].
Accordingly, each vector ρ[t] , (ρn[t])n in the set of fractions
Ψ , {ρ � 0 :

∑N
n=1 ρn ≤ 1} corresponds achieving the

point (ρ1[t]C1[t], · · · , ρN [t]CN [t]) in the multi-user rate region.
Thus, for each network state C[t] = c = (cn)Nn=1 ∈ C, the
instantaneous achievable rate region at time t is:

RC[t] = Rc , Conv({0, c1e1, · · · , cNeN}) ⊂ RN+ , (1)

where Conv(·) indicates the convex hull of a set, and en is the
nth standard unit vector. The lower part of Fig. 1 illustrates the
time-varying rate region RC[t] and the concept of time-sharing
for a two-user setting. The average achievable rate region R,
also called the capacity region, is obtained by averaging the
achievable rate region over all possible network states c ∈ C:

R =
∑

c∈C
πc · Rc, (2)

where the summation is set addition.
The following example illustrates the concepts we have

introduced so far in a key two-state setting that will be revisited
in later sections to demonstrate important characteristics of our
new framework as we develop them.

Example 1 (Two-User and Two-State Channel Setting). We
consider a two user scenario with independent and identically
distributed (i.i.d.) maximum achievable rates {Cn[t]}n=1,2 tak-
ing values from a two-state set C = {cH , cL} with cH > cL ≥
0, and p , P(Cn[t] = cH) = 1− P(Cn[t] = cL) ∈ (0, 1).
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Fig. 2. Average rate region R for a two-user network with i.i.d. maximum
achievable rates {Cn[t]}n taking values from C = {cH , cL} with cH >
cL ≥ 0, and p , P (Cn[t] = cH) ∈ [0, 1].

Thus, the network state C[t] has four possible realizations
C = {(cH , cH), (cH , cL), (cL, cH), (cL, cL)} with probabilities
p2, p(1−p), p(1−p) and (1−p)2, respectively. For each realiza-
tion of the network state C[t], the instantaneous achievable rate
region RC[t] at time t is given by a corresponding triangular
area illustrated on the left side of Fig. 2. Then, the average
achievable rate region R is obtained from (2) by averaging
these four triangular regions, resulting in a symmetric pentagon
that is illustrated on the right side of Fig. 2 for the particular
set of values p = 0.6, cH = 10 and cL = 5.

C. Discounted-Rate Utility Maximization (DRUM) Problem

Def. 1 (β-Discounted Rate). For a given β ∈ [0, 1], we define
the β-discounted rate of user n at time t ≥ 0 as

R(β)
n [t] ,

t∑

τ=−Ts+1

βt−τ Rn[τ ]

t∑

τ=−Ts+1

βt−τ
, t > −Ts, (3)

where Ts ∈ {0, 1, · · · } denotes the starting time of the system
operation. Also, define the accumulated1 β-discounted rate
∞
R

(β)
n [t] at time t as the limit of R(β)

n [t] with Ts →∞, i.e.,

∞
R(β)
n [t] ,





Rn[t], if β = 0

(1− β)

t∑

τ=−∞
βt−τRn[τ ], if β ∈ (0, 1)

lim inf
Ts→∞

1

t+ Ts

t∑

τ=−Ts+1

Rn[τ ], if β = 1

(4)

Finally, let ∞r (β)
n [t] , E

[∞
R

(β)
n [t]

]
∈ R+ be the mean accumu-

lated β-discounted rate for user n at time t.

This definition provides an effective means of capturing
varying degrees of delay sensitivity to service rates within a
common framework. The numerator in (3) adds the rates from t
backwards by decreasing the weights by a factor of β each time
the time index is decremented. As such, by choosing different
values of β ∈ [0, 1], this operation allows us to emphasize or
de-emphasize the past values of Rn[·] in the measure of rate at
time t. The denominator in (3) serves as a normalization factor
to balance the effect of β in the numerator.

We can see the versatility of this discounted-rate metric from
(4): when β = 0 the accumulated β-discounted rate

∞
R

(0)
n [t]

reduces to the instantaneous rate Rn[t] achieved in the same
slot; and when β = 1 the β-discounted rate

∞
R

(1)
n [t] becomes

the long-term time-average rate received since the beginning
of time. In-between these extremes, the parameter β ∈ (0, 1)
allows us to put different emphasis on the rates received in the
recent and remote past.

This versatile metric lies at the center of a new utility
maximization framework that we introduce next, which can
accommodate delay sensitivities in the fair allocation. Using
appropriate choices of the discount parameter β ∈ [0, 1], this
new formulation will be able to capture the sensitivity of
users to delayed service within a unified framework, whereby
β = 0 corresponds to extreme delay-sensitivity, while β ↑ 1
approaches the delay-insensitive case.

Def. 2 (Discounted-Rate Utility Maximization (DRUM)). Sup-
pose that the system starts at time −Ts ≤ 0. Given a set of

1We note that, even though we use the qualification accumulated for this
metric due to its discounted time-averaging nature,

{∞
R

(β)
n [t]

}
t

can in general
be a sequence of random variables that need not converge to a single value.



user utility functions {Un(x)}Nn=1, the Discounted-Rate Utility
Maximization (DRUM) problem is given by:

max

N∑

n=1

un

(
{R(β)

n [t]}t
)

(5)

s.t. R[t] ∈ RC[t], t > −Ts,

with un({R(β)
n [t]}t) , lim inf

T→∞
1

T + Ts

T∑

t=−Ts+1

E
[
Un

(
R(β)
n [t]

)]

measuring the average utility achieved by user n over time
with respect to its β-discounted rate performance.

In particular, we will study DRUM for the wide class of
ω-weighted α-fair utility functions defined as:

U [α]
n (x) ,

{
ωn

x1−α

1−α , α ≥ 0, α 6= 1

ωn log(x) α = 1,

}
, x > 0, (6)

for a given weight vector ω , (ωn)n � 0, i.e., ωn > 0 for all n.
Depending on the value of α these utility functions span a wide
range fairness from sum-rate (when α = 0) to proportional
(when α = 1) to MinMax-fair (as α ↑ ∞) allocations [3], [4].

III. CHARACTERIZATION AND COMPARISON OF OPTIMAL
INSTANTLY-FAIR & LONG-TERM-FAIR DRUM SOLUTIONS

In Def. 2, we have introduced our discounted-rate utility
maximization (DRUM) problem for a set of utility function
parameters: α ≥ 0, ω � 0; and discount parameter: β ∈ [0, 1].
In this section, our goal is to characterize the complete solution
of DRUM, for all α ≥ 0 and ω � 0, under the two tractable
cases of β = 0 and β = 1, corresponding, respectively, to the
instantly and long-term ω-weighted α-fair rate allocations.

The investigation in this section will reveal (cf. Proposi-
tions 1 and 2) how the statistics of channel state processes factor
into the solution of DRUM for different choices of α,ω, and β
parameters, even under perfectly symmetric utility functions
and channel conditions (cf. Corollary 1). These results will
act as benchmarks in the next section when we design and
investigate a dynamic policy that will work for all α,ω, β.

First, we characterize the instantly-fair, i.e., β = 0, DRUM
solution for all allowed values of (ω, α) parameters of {U [α]

n }n.
Proposition 1 (Complete Instantly-Fair Solution of DRUM).
I For α = 0, an2 optimal instantly-fair rate allocation
?

R(0)[t] ,
(
?

R
(0)
n [t]

)
n

when C[t] = c = (cn)n is given by:

?

R(0)
n [t] =

?

R(0)
n (c) =

cn I
(
n ∈ arg max

m∈{1,··· ,N}
{ωmcm}

)

∣∣∣∣∣ arg max
m∈{1,··· ,N}

{ωmcm}
∣∣∣∣∣

, (7)

for each n. In the last expression, I(A) denotes the indicator
function of event A, and |A| is the cardinality of set A.

2We note that in both of these cases of β = 0 and β = 1, when α = 0
there are possibly multiple solutions to DRUM, including the one we provide.

I For α > 0, the optimal instantly-fair rate allocation
?

R(0)[t] ,
(
?

R
(0)
n [t]

)
n

for any C[t] = c � 0 is given by3:

?

R(0)
n [t] =

?

R(0)
n (c) =

(ωncn)1/α

N∑

m=1

(ωmcm)1/α

cm

, ∀n, (8)

Consequently, the accumulated rates
?∞
R(0)[t] ,

( ?∞
R

(0)
n [t]

)
n

(cf.
(4)) achieved under the instantly-fair allocation are given by
?∞
R

(0)
n [t] =

?

R
(0)
n (C[t]) with the right-hand-side given by (7) and

(8) when α = 0 and α > 0, respectively.

Proposition 1 (see [16] for the proof) explicitly provides
the optimal instantly-fair DRUM solution for a given (ω, α)
pair as a function of the network state random vector C[t].

As such, the optimal rate allocation
?

R(0)(C[t]) is a random
vector that is governed by the distribution π = (πc)c of C and
does not converge to a constant as t diverges. This comes from
the highly delay-sensitive nature of the instantly-fair allocation
due to the choice β = 0. In contrast, we will see in the next
proposition that in the long-term-fair case when β = 1, the
optimal allocation will be a constant vector. The above solution
of the instantly-fair allocation also captures the impact of ω and
α parameters on the DRUM solution. We shall comment further
on this impact in contrast with the long-term case after we
provide the characteristics of the long-term ω-weighted α-fair
DRUM solution, i.e., when β = 1, in the following proposition.

Proposition 2 (Complete Long-Term-Fair Solution of DRUM).
For any α ≥ 0, the optimal long-term-fair rates

?∞
R(1)[t] ,

( ?∞
R

(1)
n [t]

)
n

converge to a constant average accumulated rate

vector
?∞
r (1) (cf. Def. 1) that solves:

?∞
r (1) ∈ arg max

r,(rn)n∈R

N∑

n=1

U [α]
n (rn), (9)

where U [α]
n (·) is the ω-weighted α-fair function given in (6),

and R is the average achievable rate region defined in (2).
The solution of (9) exists for α ≥ 0 and is unique for α > 0.

Given the solution of
?∞
r (1) from (9), we can now characterize

the optimal long-term-fair rate allocation
?

R(1)[t] at each time
t for different choices of α.
I For α = 0, an3 optimal long-term-fair rate allocation
?

R(1)[t] ,
( ?
R

(1)
n [t]

)
n

when C[t] = c = (cn)n is given by
the same allocation (7) as in the instantly-fair case.
I For α > 0, the optimal long-term-fair rate allocation
?

R(1)[t] =
?

R(1)(c) = ρ?n(c) cn when C[t] = c = (cn)n, is
found by solving for {ρ?(c)}c∈C that satisfies, for each n:

∑

c∈C
πc ρ

?
n(c) cn I


n ∈ arg max

m∈{1,··· ,N}

ωmcm( ?∞
r
(1)
m

)α


 =

?∞
r (1)
n , (10)

where (ρ?n(c))n ∈ Ψ , {ρ � 0 :
∑N
n=1 ρn ≤ 1}, ∀c ∈ C.

3Note that in this case, if any cn = 0, then the utility function value of that
user becomes −∞, hence that scenario is excluded.



Proposition 2 (see [16] for the proof) characterizes the
optimal long-term-fair DRUM solution implicitly through the
solutions of (9) and (10) for a given (ω, α) pair. These equa-
tions can in general be difficult to solve and require knowledge
of the network statistics π. While we defer the solution of these
equations through simple updates to the next section, next we
consider an important special case of the network scenario that
allow us to explicitly solve them and provide an interesting
comparison between the accumulated rate performances of
instantly-fair and long-term-fair optimal allocations.

Corollary 1 (Comparison of Instantly and Long-Term-Fair
Allocations under Symmetry). Suppose that: (i) each channel
Cn[t] ∈ C , {c1, · · · , cK} is independently and identically
distributed4 (i.i.d.) according to a common distribution p ,
(p1, · · · , pK) with P(Cn[t] = 0) = 0; and (ii) the {U [α]

n (·)}n
weights are ωn = 1,∀n. Then, we can write the average

accumulated discounted rate
?∞
r
(β)
n [t] , E

[
?∞
R

(β)
n [t]

]
(cf. Def. 1)

for the instantly and long-term-fair optimal allocations as
follows: for each slot t,

?∞
r (0)
n [t] =





1
N E

[
max

m∈{1,··· ,N}
Cm[t]

]
, if α = 0

E




(Cn[t])
1
α

N∑
m=1

(Cm[t])
1
α−1


 , if α > 0.

(11)

?∞
r (1)
n [t] =

1

N
E

[
max

m∈{1,··· ,N}
Cm[t]

]
, ∀α ≥ 0. (12)

It is insightful to rewrite (11) for proportionally-fair (α = 1)
and MaxMin-fair (α ↑ ∞) cases:

?∞
r (0)
n [t] =





1
N E [Cn[t]] , if α = 1

E

[(
N∑
m=1

1
Cm[t]

)−1]
, as α ↑ ∞. (13)

Corollary 1 reveals the non-trivial impact of the fairness pa-
rameter α on the average accumulated rates under the instantly
and long-term fair allocations. In particular, (12) reveals that
the long-term-fair optimal allocation

?

R(1)(c) is insensitive to
the choice of α ≥ 0 value under these symmetric conditions,
and equally shares the service between users that achieve the
maximum achievable rate at the given network state c. In
contrast, the optimal instantly-fair allocation (11) is sensitive to
α values: when α = 0, i.e., when the utility functions are linear,
it performs the same allocation as the optimal long-term-fair
allocation; and when α > 0 it becomes increasingly sensitive
to the network state distribution as α increases.

The above corollary also reveals the interesting impact
of the network state C[t] statistics on the achieved average
accumulated rates. In particular, (12) shows that the average
accumulated rate of long-term-fair allocation is governed by
the maximum of all achievable rates {Cm[t]}m for all α ≥ 0.
In contrast, (11) and (13) reveal that the average accumulated

4Note that until here, we allowed channel states to be correlated across users.

rate of instantly-fair allocation varies from their maximum in
the sum-rate-optimal case (α = 0), to their arithmetic mean in
the proportionally-fair case (α = 1), to their harmonic mean
in the MaxMin-fair case (α ↑ ∞). This relationship is further
demonstrated in the following example.

Example 2 (DRUM Solutions for the Two-User and Two-State
Setting). For the same setting as in Example 1, the long-
term-fair solution of DRUM (cf. Proposition 2) allocates all
resources to the user who sees a good channel (if both users
see a good channel, they share equally) regardless of α due
to symmetry. This scheme achieves a high average rate for
both users at the boundary of the average rate region R as
depicted in Fig. 3. This high rate, however, comes at the risk
of possible high delay since it is insensitive to intermittent and
bursty services. If a user’s channel remains in a bad state for an
extended duration, as it will in many realistic wireless settings,
that user will receive low rates for that duration, resulting in
delays in its average service experience.
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Fig. 3. Average accumulated instantly-fair rates achieved by user 1 in the two-
user, two-state setting of Example 1 with varying α ≥ 0. As α goes from 0 to
∞, the rate ranges between the sum-rate-optimal and MaxMin-fair allocations.

The instantly-fair solution of DRUM (cf. Proposition 1)
achieves the same rates as the long-term-fair case for α = 0.
When α > 0, however, it allocates positive rates to both users
at every block, ensuring a steady distribution of the resources.
Moreover, as α increases the rates of both users will become
more similar, and equal to the average harmonic mean in the
limit. Achieving fairness at each block, however, comes at the
cost of lower rate. Fig. 3 shows how the achieved rate decreases
with increasing α. The figure also shows that the range of
instantly-fair rates lies between the maximum of the channel
rates and the harmonic mean of the channel rates. As such,
these statistics emerge as important measures in characterizing
the largest cost of long-term-fair versus instant-fair in terms of
the statistics of the channel rates.

IV. DYNAMIC ALGORITHM FOR GENERAL SOLUTION OF
DRUM AND ITS OPTIMALITY GUARANTEES

In section III, we have presented the optimal DRUM solu-
tion for instantly-fair and long-term-fair rate allocations which
correspond to the extreme values of the rate-discount parameter
β ∈ [0, 1]. In both cases the solution requires the full knowledge



of the channel statistics π. It is possible to develop simple
dynamic algorithms that do not require the knowledge of
π, which can be asymptotically long-term-fair-optimal in the
limit as time goes to infinity. In particular, queue-length-based
policies that achieve this goal have been developed in several
works (e.g., [6], [7], [8]). However, we are interested not only
in solving the instantly-fair and long-term fair allocations but in
solving the problem in the range between these extremes, which
calls for a new design. In this section, we address this need by
introducing a dynamic algorithm that provides a solution to
the DRUM problem for values of α ≥ 0 and β ∈ [0, 1), and
does not require the knowledge of the channel statistics π. Our
algorithm is not restricted to symmetric channel conditions and
weights, but applies to the most general setup.

Def. 3 (Dynamic-DRUM (D-DRUM) Algorithm). The
Dynamic-DRUM algorithm starts at an arbitrary time t = −Ts
with the β-discounted rate initialized to R

(β)
n [−Ts] = 0 for

all n ∈ {1, · · · , N}. Then, at time slot t > −Ts, given
R(β)[t − 1] = (R

(β)
n [t − 1])n and the network state C[t], the

algorithm allocates R(β)[t] as:

R[t] ∈ arg max
r∈RC[t]

N∑

n=1

Un

(
βR(β)

n [t− 1] + (1− β)rn

)
(14)

and uses this R[t] to update R(β)[t] from R(β)[t− 1] as:

R(β)[t] = βR(β)[t− 1] + (1− β)R[t] (15)

For the particular class of ω-weighted α-fair utility functions
{U [α]

n (x)}n defined in (6), the solution to the maximization
problem in (14) is given by:

Rn[t] =

((
(1− β)1−αcnωn

λ?

) 1
α

− β ·R(β)
n [t− 1]

1− β

)+

, (16)

where (x)
+ , max{0, x} and λ? > 0 satisfies

N∑

n=1

1

cn

((
(1− β)1−αcnωn

λ?

) 1
α

− β ·R(β)
n [t− 1]

1− β

)+

= 1 (17)

Note that (16) and (17) correspond to a waterfilling solution,
which can be solved exactly with O(N log(N)) computational-
complexity: At each time t, the algorithm determines the
number of users which can be allocated a nonzero rate without
violating the total capacity constraint in (17). Finding this
number requires sorting the N users based on their maximum
λ value that makes Rn[t] zero in (16). The O(N log(N)) com-
plexity follows from noting that this sorting operation governs
the computational complexity of the D-DRUM algorithm.

We note that the update rule (15) bears a similarity to the
update rule in the proportionally-fair rate allocation policy
introduced in [17], but differs from it in two important aspects.
First, the rate allocation decision in (14) differs from that in
[17]. Second, our policy is not specific to the proportionally-
fair case but accommodates all α-fair utility functions, and
integrates the discount parameter β into its allocation. In
this respect, D-DRUM can be viewed as an alternate to the
proportionally-fair scheduler in [17] when α = 1 and β ↑ 1,

and also a generalization in accommodating all other α-fairness
metrics. In the following theorem, we establish this fact that the
rate allocation achieved by our algorithm achieves the optimal
rate allocations for both β = 0 and as β ↑ 1.

Theorem 1 (Instant and Long-Term Optimality of D-DRUM).
D-DRUM achieves the instantly-fair optimal allocation when
β = 0 and converges to the long-term-fair optimal allocation
as β ↑ 1. Specifically, the discounted rates R(β)[t] achieved
under D-DRUM satisfies:

R(0)[t] =
?

R(0)[t], ∀ t > −Ts, (18)

where
?

R(0)[t] is defined in Proposition 1, and

lim
β↑1

lim
t→∞

R(β)[t] =
?∞
r (1), w.p. 1, (19)

where
?∞
r (1) is defined in Proposition 2.

While the proof of optimality for instantly-fair allocation is
immediate, the proof of optimality for long-term-fair allocation
requires a more subtle upper and lower-bounding to establish
(see [16] for the complete proof). With this theorem, D-DRUM
yields a new means for solving the long-term fair allocation
problem that is attacked in several earlier works through dual
methods (e.g., [6], [7], [8]). Yet, D-DRUM also provides the
versatility to emphasize short-term fairness experience through
the choice of β parameter. Next, we revisit the two-user and
two-state scenario from Examples 1 and 2 to demonstrate that
our D-DRUM algorithm attains the long-term and instantly-fair
allocations for each α ≥ 0 as its β parameter approaches 0 and
1, and spans all rates in-between by varying β ∈ (0, 1).

Example 3 (D-DRUM Algorithm Performance for the Sym-
metric Two-User and Two-State Setting). For the same setting
as in Example 1, the average rate performance of the D-DRUM
algorithm with varying β is depicted in Fig. 4.
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Fig. 4. Average accumulated β-discounted rates achieved by user 1 in the two-
user, two-state setting of Example 1 with varying β ∈ [0, 1) for α ∈ {0, 1, 10}.
For each α, as β goes from 0 to 1, the average accumulated β-discounted rate
increases from its instantly-fair value to the long-term-fair value as shown in
the plot on the right.

The left plot repeats the right plot in Fig. 3 to indicate the
span between the instantly-fair and long-term-fair allocations
for sum-rate-optimal (α = 0 in green), proportionally-fair (α =
1 in black), and essentially MaxMin-fair (α = 10 in blue) cases.
Then, the right plot gives the average rate that our D-DRUM
algorithm provides to user 1 as its discount parameter β ranges



from 0 to 1. For each case of α = {0, 1, 10}, we see that
the algorithm achieves the instantly-fair and the long-term-fair
allocations in its extremes, and spans all value in-between as
β spans (0, 1). We also see by comparing the right-hand plots
for α = 1 and α = 10 that as α increases, the average rate
performance becomes less sensitive to low β values and highly
sensitive to changes in β around 1.

Example 3 illustrates the performance of D-DRUM for the
symmetric setting of i.i.d. channel statistics and equal weights
ω in the choice of α-fair utility functions. In the next example,
we consider the case of non-i.i.d. channels and non-uniform
utility weights to show that the optimality characteristics of
D-DRUM continue to hold more generally.

Example 4 (Dynamic-DRUM Algorithm Performance for an
Asymmetric Two-User and Two-State Setting). We consider
an asymmetric two user scenario where both users’ maximum
achievable rates take values from different sets (C1 = {4, 11}
and C2 = {5, 10}) with different probabilities (p1 = (0.6, 0.4)
and p2 = (0.4, 0.6)). Fig. 4 depicts the average rate per-
formance of D-DRUM for a fixed α = 1 (i.e. instantly
proportionally-fair allocation) and a range of β and ω.
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Fig. 5. Trajectories of the average accumulated β-discounted rates achieved by
our Dynamic DRUM Algorithm for the asymmetric two-user, two-state setting
with varying β ∈ [0, 1) and different ω. For the case of α = 1, trajectories
for ω ∈ {(20, 1)T , (19, 2)T , · · · , (1, 20)T } are illustrated as β starts from
0 and as it approaches 1. The rates converge to the long-term optimal rates
indicated at the boundary of the asymmetric average achievable rate region R.

Each trajectory corresponds to a different weight vector ω
while the individual points on each trajectory correspond to a
different discount parameter β. For each trajectory, as β starts
from 0 and approaches 1, the achieved average rates increase
towards the optimal long-term fair allocation on the boundary
of the average achievable rate region R. The particular limit
points depend on how ω weighs one user over the other. For all
sets of parameters, the performance of the D-DRUM algorithm
approaches the optimal long-term rates as β ↑ 1. Here, the
optimal long-term rates are independently calculated using a
dual queue-length-based approach in [8].

Examples 3 and 4 not only confirm the optimality features of
D-DRUM in its extremes (both for symmetric and asymmetric
conditions), but also show how the α and β values can jointly
impact the average rates provided to the users. These show that
D-DRUM is a highly stable and effective strategy for accom-
modating user sensitivities to short-term service variations.

V. FURTHER OBSERVATIONS ON THE STATISTICAL
PERFORMANCE OF THE DYNAMIC-DRUM ALGORITHM

In order to develop a more comprehensive understanding of
D-DRUM performance, in this section we extend our previous
investigations in two aspects: (1) we consider more realistic
continuous-valued fading channels; (2) we study the distribu-
tion of the user rates under D-DRUM rather than their averages.

In particular, we consider a two-user5 i.i.d. Rayleigh fading
scenario where scheduled users transmit at a fixed power P over
additive white Gaussian noise with power N0 and P

N0
= 3dB.

Then, for the channel gain Hn[t] of user n at time t, the max-
imum achievable rate Cn[t] becomes log

(
1 + |Hn[t]|2 P

N0

)
,

where |Hn[t]|2 is exponentially distributed.

• Distribution of Instantaneous User Rates: Until now,
we have focused on the performance of the accumulated β-
discounted user rates R(β)[t] as the metric of interest. However,
R(β)[t] is only a virtual metric to measure the delay sensitivity
of the users, whereas R[t] is the actual amount of service
received. Accordingly, it is important to understand the D-
DRUM performance with respect to the statistics of individual
user rates {R[t]}t. Fig. 6 illustrates the empirical CDF and pdf
of instantaneous rates R1[t] for user-1 achieved under D-DRUM
for varying β ∈ {0, 0.5, 0.99} values and α = 1.
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algorithm for α = 1 and β varying over {0, 0.5, 0.99}.

When β = 0, not surprisingly, the distribution of {R1[t]}t
resembles a Rayleigh distribution since the scheduler aims for

5See [16] for further results including scenarios with more than two users.



instant-fairness. As β increases towards a mid-level of 0.5, we
see that the allocation to the user spreads to a wider range for
positive values and a strictly positive probability emerges where
the user receives 0 rate. This trend becomes even stronger as
β approaches 1, whereby the user receives 0 rate half of the
time and receives high rates at other times. This reveals the cost
of achieving high long-term rates in opportunistic scheduling,
namely, high variability in the instantaneous rates so that good
conditions of users can be exploited. These results show that,
by adjusting the discount parameter β, the D-DRUM Algorithm
provides the means to optimize the tradeoff between achieving
high long-term rates and low instantaneous rate variability.

• Correlation between Individual User Rates: Another in-
teresting characteristic-of-interest is the relationship between
individual user rates that share the common medium. To that
end, Fig. 7 depicts the correlation coefficient between the two
user rates under D-DRUM for different α values and β ∈ [0, 1).
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Fig. 7. Correlation coefficient for different α values over β.

For each α, this correlation decreases as β increases, because
D-DRUM exploits the time-varying channel capacities more
aggressively to achieve higher discounted-rate levels. Accord-
ingly, it increasingly favours the user with high achievable
rates while the other tends to receive lower rates, which causes
a decrease in the correlation. Also, as α increases, i.e., the
fairness requirement gets stronger, the starting correlation level
gets higher, reaching 1 in the limit. This is because higher
α values enforce increasingly equal instantaneous allocations
(under symmetric channel conditions) when β is small. Yet, in
all cases, as β increases the averaging affect kicks in (albeit at
different rates) to provide sufficient flexibility for D-DRUM to
take advantage of the channel variations.

VI. CONCLUSIONS

We introduced a new optimization-based framework for
measuring and accommodating the sensitivities of users to
time-variations in their received service in a shared wireless
fading communication environment. Our framework utilizes
discounting of received service rates over time in order to
incorporate such sensitivities into a utility maximization formu-
lation. This, so-called Discounted-Rate-Utility-Maximization
(DRUM), formulation enables a unified treatment of varying
degrees of sensitivities to service rate fluctuations between the
extremes of instantly-fair (i.e., highly delay-sensitive) and long-
term-fair (i.e., delay-insensitive) allocations.

Within this new framework, we first characterized the optimal
instantly-fair and long-term-fair allocations for the general class
of ω-weighted α-fair utility functions. Then, we developed a
novel, low complexity Dynamic-DRUM (D-DRUM) Algorithm
for the general solution of DRUM for any discount parameter
β. We proved that D-DRUM achieves the optimal solutions of
the instantly-fair and long-term-fair allocations as β approaches
its extremes. We illustrated through extensive numerical in-
vestigations that D-DRUM smoothly and stably achieves rate
allocations between the instant and long-term optimal extremes
by varying β. These investigations also shed light on the
temporal dynamics of D-DRUM allocations for individual users
and the correlation between the rates of different users.

Based on these results and investigations, we believe that
the DRUM framework and the D-DRUM Algorithm show
great promise in providing a well-founded means of modeling
and managing user sensitivities to short-term fluctuations in a
stochastic resource-sharing environment.
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MA: Birkhäuser, 2004.

[4] J. Mo and J. Walrand, “Fair end-to-end window-based congestion con-
trol,” IEEE/ACM Trans. on Networking, vol. 8, pp. 556–567, Oct. 2000.

[5] X. Liu, E. Chong, and N. Shroff, “Opportunistic transmission scheduling
with resource-sharing constraints in wireless networks,” IEEE JSAC,
vol. 19, no. 10, pp. 2053–2064, October 2001.

[6] M. Neely, E. Modiano, and C. Li, “Fairness and optimal stochastic control
for heterogeneous networks,” in Proc. of IEEE Infocom, March 2005.

[7] X. Lin and N. Shroff, “The impact of imperfect scheduling on cross-
layer rate control in multihop wireless networks,” in Proc. IEEE Infocom,
Miami, FL, March 2005.

[8] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless net-
works using queue-length based scheduling and congestion control,” in
Proceedings of IEEE Infocom, Miami, FL, 2005.

[9] A. L. Stolyar, “Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm,” Queueing Systems, vol. 50, no. 4, pp.
401–457, August 2005.

[10] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 36, pp. 1936–1948, December 1992.

[11] ——, “Dynamic server allocation to parallel queues with randomly
varying connectivity,” IEEE Trans. on Inf. Theory, vol. 39, pp. 466–478,
March 1993.

[12] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1439–1451, Aug 2006.

[13] X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on cross-layer opti-
mization in wireless networks,” IEEE JSAC, special issue on Nonlinear
Optimization of Communication Systems, vol. 14, no. 8, August 2006.

[14] M. J. Neely, “Stochastic network optimization with application to com-
munication and queueing systems,” Synthesis Lectures on Communication
Networks, vol. 3, no. 1, pp. 1–211, 2010.

[15] A. ParandehGheibi, A. Eryilmaz, A. Ozdaglar, and M. Medard, “Re-
source allocation for multiple-access channels–an approximate projection
approach,” IEEE Trans. on Inf. Theory, vol. 56, pp. 4417–4437, 2010.

[16] A. Eryilmaz and I. Koprulu, “Technical report - DRUM:
A Framework for Delay-Sensitive Fair Resource Allocation,”
https://dl.dropboxusercontent.com/u/37651713/DRUMreport.pdf.

[17] P. Viswanath, D. N. Tse, and R. Laroia, “Opportunistic beamforming
using dumb antennas,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1277–
1294, June 2002.


