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Abstract—We study the question of routing for minimum
average drop rate over unreliable servers that are prone to
random buffer failures. Such a generic setup can be used to model
scenarios of interest in unreliable data or manufacturing networks.
Interestingly, we first reveal that the traditional Join-the-Shortest-
Queue (JSQ) or optimal Randomized Splitting (RS) strategies are
consistently outperformed by the Constant Splitting Rule (CSR)
where the incoming traffic is split with a constant fraction towards
the available servers.

This finding motivates us to obtain the optimal splitting fraction
under CSR. However, the objective function to be minimized
depends on the mean queue length of the servers, whose closed-
form expression is not available and often intractable for general
arrival and service processes. Thus, we use non-derivative methods
to solve this optimization problem by approximately evaluating the
objective value at each iteration. To that end, we explicitly charac-
terize the approximation error by utilizing the regenerating nature
of unreliable buffers. By adaptively controlling the precision of this
approximation, we show that our proposed algorithm converges
to an optimal splitting decision in the almost sure sense.

I. INTRODUCTION

The design and analysis of routing decisions for unreliable
networks has received a lot of research interest [18][13]. In this
work, we study the problem of efficient routing for forwarding
the arrivals to parallel unreliable queues, where all data in a
queue will be dropped when a failure happens. Our goal is
to design an efficient routing policy which has a small average
drop rate under any arrival rate. One application of this problem
in the field of manufacturing systems is the wafer distribution to
the parallel production pipelines. If the power of one production
pipeline stops even for 0.07s, all wafers in that pipeline break
down. Similarly, in data networks serving delay-sensitive traffic,
any unexpected setback in the service causes the dropping of all
awaiting packets. In both scenarios, we need to make intelligent
routing decisions to distribute the incoming traffic to unreliable
servers, which is the focus of this work.

Join the Shortest Queue (JSQ) policy [20], where all arrivals
are forwarded to the shortest queue at each slot, has been
widely used as a basic routing mechanism in wired or wireless
communication networks. When all queues are reliable (e.g.,
no failure happens), the JSQ policy is shown to have minimum
delay in the symmetric case [16], or under heavy-traffic [5][4],
and exhibits good performance in the general cases. However,
when there are some unreliable queues, the JSQ policy may
perform poorly. To see this, consider a system consisting of
one reliable queue and one totally unreliable queue (e.g., failure
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happens all the time), all arrivals are routed to the unreliable
queue under the JSQ policy and thus the average drop rate is
100%. In [13], the authors studied the Randomized Splitting
(RS) policy that forwards all arrivals to a queue with a certain
probability in the similar scenario. They obtained the optimal
RS for the Poisson arrivals and exponential services. Yet, to
the best of our knowledge, there does not exist a work that
systematically treats this problem under general arrival and
service processes and proposes an efficient routing policy.

In this work, we propose a constant splitting rule (CSR)
that forwards a constant fraction of incoming traffic to each
of the available (unreliable) servers. We show that the opti-
mal CSR minimizes the average drop rate among all routing
policies when both arrivals and services are deterministic. For
the general arrival and service processes, the optimal CSR
outperforms, based on numerical investigations, the well-known
policies, e.g., JSQ and RS. To obtain the optimal splitting
fraction, we need to solve the optimization problem with the
objective function depending on the mean queue length. Since
the formula for the mean queue length is hard to obtain under
general arrival and service processes, it is difficult to get
the exact expression for the objective function, let alone its
derivative. Hence, it is almost impossible to use first or higher
order numerical optimization methods to solve this optimization
problem and thus we use non-derivative methods to get the
optimal splitting fraction.

The most popular non-derivative method includes Patterned
Search (PS) algorithms [14][6][7], which construct the set of
points based on the step size varying according to a certain
rule: when no improvement point is obtained on this set in the
current iteration, then the step size reduces and the process is
repeated. However, all these works require the exact functional
value for the given point, which can not be achieved in practice.
In [15], the authors presented a modified PS algorithm which
adaptively adjusts the precision of the functional evaluations for
the deterministic system where the accuracy of the functional
value improves by increasing the evaluation time.

In our setup, the functional evaluation includes estimating
the mean queue length, which can be approximated by the
time average queue length. However, the approximate error is
in the probabilistic form and thus it is unclear how to control
the precision to guarantee the convergence to the stationary
point almost surely. The earlier works [17][8] attacked this
problem when the objective function is continuously differ-
entiable, which is not the case in our setup. We generalized
the previous results to the case when the objective function is
locally Lipschitz continuous. The following items list our main



contributions along with references on where they appear in the
text:
• In Section III, we reveal the advantage of optimal CSR

over JSQ or RS in the presence of buffer breakdowns, both by
showing its optimality under deterministic processes and also
by providing numerical results under general processes. This
motivates us to obtain the optimal constant splitting fraction
for the general stochastic system by using the aforementioned
PS algorithm.
• In Section IV, we first characterize the probabilistic error

between the approximate value and the true objective value.
Then, we present the PS algorithm that adaptively adjusts the
probabilistic error in each iteration, which is shown to guarantee
the convergence to the optimal point almost surely.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider the classic system consisting of a router and
L servers with associated unreliable queues (see Figure 1). At
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Fig. 1. System model for routing over unreliable queues

each time slot, the router needs to determine how to forward the
arrivals. We assume that all data in the queue will be dropped
if a failure happens. Let Fl[t] denote whether a failure happens
at queue l at slot t, where Fl[t] = 1 if a failure happens and
Fl[t] = 0 otherwise. We assume that Fl[t],∀l, t, are indepen-
dently distributed over queues and identically distributed over
time, with pl := Pr{Fl[t] = 1} > 0,∀l. Let Ql[t] be the queue
length of queue l at the beginning of slot t. Let A[t] denote the
amount of data arriving at router in slot t with E[A[t]] = λ, and
E[A2[t]] ≤ ν for some ν < ∞. We assume that A[t],∀t, are
identically distributed over time. Let Sl[t] denote the maximum
amount of data that can be served by server l at slot t with
E[Sl[t]] = µl and E[S2

l [t]] ≤ κl for some κl < ∞. We assume
that Sl[t],∀l, t, are independently distributed over queues and
identically distributed over time. If the router forwards Al[t]
amount of data to queue l at slot t, then the evolution of queue
l is shown as follows 1:

Ql[t + 1] = ((Ql[t] + Al[t])(1− Fl[t])− Sl[t])
+

,∀l, (1)

where (x)+ := max{x, 0}. Our goal is to find the routing
policy {(Al[t])L

l=1}t≥0 that minimizes the average drop rate.

1This particular evolution assumes arrivals into queues before failures. Other
variations would not change the essential features of the subsequent discussion.

At each slot t, the amount of dropped data at queue l is
equal to (Ql[t] + Al[t])Fl[t] and thus its expected value is
plE[Ql[t] + Al[t]]. Hence, our goal is to solve the following
stochastic control problem (SCP):

Definition 1: (SCP)

Minimize
{(Al[t])L

l=1}t≥0

lim sup
T→∞

1
T

T−1∑
t=0

L∑

l=1

plE [Ql[t] + Al[t]] (2)

Subject to
L∑

l=1

Al[t] = A[t],∀t, (3)

where λ = lim
T→∞

1
T

T−1∑
t=0

E[A[t]].

It is very tough to solve SCP directly. Instead, we consider
the following efficient routing policy.

Definition 2: (Constant Splitting Rule (CSR)) Forward al

fraction of data to queue l, ∀l = 1, ..., L− 1 and the remaining
aL := 1 −∑L−1

l=1 al fraction of data to queue L at each time
slot, where al,∀l = 1, ..., L − 1, are non-negative and satisfy∑L−1

l=1 al ≤ 1.
In Section III, we will show that the optimal CSR is an

optimal routing policy to the above SCP problem for the system
with symmetric failure probabilities under constant arrivals
and constant services. Moreover, through simulations, we can
observe that the optimal CSR outperforms the well-known
routing policies, e.g., JSQ and optimal RS. Thus, our main task
is to obtain the optimal CSR policy in the rest of the paper.

Since the mean queue length is a convex function of the
arrival rate for a single queue (by Proposition 4 in Section IV)
and the mean arrival rate for queue l is alλ, let fl(alλ) be
the mean queue length for queue l. Let a , (al)L−1

l=1 . To get
the optimal CSR, we need to solve the following optimization
problem:

Minimize
a

g(a) :=
L∑

l=1

plfl(alλ) +
L∑

l=1

plalλ (4)

subject to
L−1∑

l=1

al ≤ 1 (5)

al ≥ 0,∀l = 1, 2, ..., L− 1. (6)

It is difficult to get the exact expression for g(a) under the
general arrival and service processes, let alone to obtain its
derivative. Thus, it is almost impossible to use first or higher
order numerical optimization methods to solve this optimization
problem. Hence, the only option for us is to use non-derivative
methods, which only evaluates the functional value at each
iteration. However, it is worth emphasizing that it is also hard to
get the exact mean queue length for general arrival and service
processes. Thus, we use the time average queue length to
approximate the mean queue length with the error characterized
in the probabilistic form. By controlling the probabilistic error
in each iteration, the proposed algorithm can guarantee almost
sure convergence to the optimal point. Appendix A explores
some basic properties for a single unreliable queue. Next, we



will show the optimality of CSR in the deterministic system
with symmetric non-zero failure probabilities and point out its
robustness in the general stochastic system.

III. THE ADVANTAGE OF OPTIMAL CSR
In this section, we first show that the optimal CSR minimizes

the average drop rate among all routing policies for the system
with symmetric failure probabilities under constant arrivals and
services. Moreover, for general arrival and service processes,
we numerically observe that the optimal CSR outperforms the
well-known routing policies, i.e., JSQ and optimal RS.

Lemma 1: For a single queue with constant arrival λ and
constant service µ under the non-zero failure probability p ∈
(0, 1), the mean queue length is 1−p

p (λ− µ)+.
Proof: See Appendix B for the proof.

Remarks: Note that the mean queue length is not a continuously
differentiable function of the arrival rate.

Proposition 1: For the system consisting of L unreliable
queues with the constant service µl and same non-zero failure
probability p under the constant arrival λ, the optimal CSR
minimizes the average drop rate among all routing policies.

Proof: Under the above setup, our goal (4) is equivalent
to minimizing

lim sup
T→∞

1
T

T∑
t=1

L∑

l=1

E[Ql[t]]. (7)

We prove this proposition by first establishing the fact that
under any routing policy, the term (7) in the original system
is lower bounded by that in a single queue with the failure
probability p under the constant arrival λ and constant service∑L

l=1 µl. Then, we show that the optimal CSR can achieve this
lower bound and thus is optimal among all routing policies.

Let Qe[t] be the queue length in the introduced single queue
at time t. By Lemma 3 in Appendix A, there exists a random
variable Q̄e with E[Q̄e] < ∞ such that limt→∞ E[Qe[t]] =
E[Q̄e]. Hence, by Cesaro’s lemma, we have

lim
T→∞

1
T

T−1∑
t=0

E[Qe[t]] = E[Q̄e]. (8)

(1) If λ ≤ ∑L
l=1 µl, then by Lemma 1, we have E[Q̄e] = 0.

Thus, it is obvious that

lim
T→∞

1

T

T−1∑
t=0

E[

L∑

l=1

Ql[t]] ≥ lim sup
T→∞

1

T

T−1∑
t=0

E[Qe[t]]. (9)

(2) If λ >
∑L

l=1 µl, by taking the expectation on both sides
of (1), we have

E[Ql[t + 1]] = (1− p)E[(Ql[t] + Al[t]− µl)+],∀l.
Then, we have

E

[
L∑

l=1

Ql[t + 1]

]
= (1− p)

L∑

l=1

E[(Ql[t] + Al[t]− µl)
+]

≥ (1− p)E

[
L∑

l=1

Ql[t] + λ−
L∑

l=1

µl

]
. (10)

On the other hand,

E[Qe[t + 1]] = (1− p)E[Qe[t] + λ−
L∑

l=1

µl]. (11)

Thus, if
∑L

l=1 Ql[0] = Qe[0], then by combining
(10) and (11), we have E[

∑L
l=1 Ql[1]] ≥ E[Qe[1]]. If

E[
∑L

l=1 Ql[t]] ≥ E[Qe[t]], then we have

E

[
L∑

l=1

Ql[t + 1]

]

≥ (1− p)E

[
L∑

l=1

Ql[t] + λ−
L∑

l=1

µl

]
(by equation (10))

≥ (1− p)E

[
Qe[t] + λ−

L∑

l=1

µl

]
= E[Qe[t + 1]].

Thus, by induction, we have E
[∑L

l=1 Ql[t]
]
≥ E[Qe[t]],∀t and

thus (9) still holds. By Lemma 1, we have E[Q̄e] = 1−p
p (λ −∑L

l=1 µl)+. Thus, we have

lim sup
T→∞

1
T

T∑
t=0

L∑

l=1

E [Ql[t]] ≥ 1− p

p
(λ−

L∑

l=1

µl)+. (12)

This shows that the introduced single queue system is in fact
a lower bound to the original system in terms of (7).

Next, we will show that the optimal CSR can achieve this
lower bound. Since for CSR policy, the router forwards al

fraction of arrivals to queue l at each slot, by Lemma 3 in
Appendix A, there exists a random variable Q̄l with E[Q̄l] < ∞
such that limt→∞ E[Ql[t]] = E[Q̄l]. Hence, by Cesaro’s lemma,
we have

lim
T→∞

1
T

T−1∑
t=0

E[Ql[t]] = E[Q̄l]. (13)

By Lemma 1, we have E[Q̄l] = 1−p
p (alλ − µl)+. Thus, the

optimization problem (7) becomes

Minimize
(al)L

l=1

1− p

p

L∑

l=1

(alλ− µl)+ (14)

Subject to
L∑

l=1

al = 1 (15)

al ≥ 0,∀l = 1, ..., L. (16)

It is easy to see that if λ ≤ ∑L
l=1 µl, then a∗l = µl∑L

l=1 µl
,∀l. In

this case, the optimal value is 0. If λ >
∑L

l=1 µl, then

a∗l =
µl

λ
,∀l = 1, ..., L− 1, a∗L =

λ−∑L−1
l=1 µl

λ
. (17)

In this case, the optimal value is 1−p
p (λ − ∑L

l=1 µl), which
is exactly the lower bound in (12). Thus, the optimal CSR is
indeed optimal among all routing policies.
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Fig. 2. Average data drop rate under symmetric case
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Fig. 3. Average data drop rate under asymmetric case

Next, we will show that the optimal CSR also outperforms
the well-known routing policies, i.e., JSQ and optimal RS
through simulations.

In the simulation, there are L = 2 unreliable queues. The
amount of arrivals and services in each slot follows Poisson
distribution with λ and µ = [µ1, µ2] respectively. We use brute-
force search method to get the optimal RS and optimal constant
splitting fraction. Fig. 2(a) and 2(b) compare the average drop
rate among optimal CSR, optimal RS and JSQ under the
symmetric cases. From Fig. 2(a) and 2(b), we can observe that
JSQ exhibits good performance when the failure probability is
small and the optimal CSR is quite robust for both low and
high failure probability. Fig. 3(a) and 3(b) give the average
drop rate of these routing policies under the asymmetric cases.
From Fig. 3(a) and 3(b), we can see that JSQ performs better
than the optimal RS in the high arrival rate and shows worse
performance in the low arrival rate, while the optimal CSR has
the best performance in all cases. Thus, the optimal CSR is
quite robust when the unreliable queues exist. However, it is
hard to solve the optimization problem (4) without the exact
expression for the objective function by the first or higher order
numerical optimization methods. Instead, we introduce the non-
derivative method in the next section.

IV. NON-DERIVATIVE METHOD FOR THE OPTIMAL CSR

In Section III, we observed the advantage of using optimal
CSR over JSQ or optimal RS. In this section, we turn to the
question of finding the optimal splitting fraction that solves the
problem (4). This calls for the use of non-derivative methods
since the objective function is not known in closed form, and
can only be evaluated approximately. To that end, in Section
IV-A, we estimate the error between the approximate objective

function g(a) in (4) and its true value at the given splitting
fraction a in the probabilistic form. Then, in Section IV-B, we
use non-derivative methods to solve the optimization problem
(4) and show its almost sure convergence to an optimal point.

A. Approximation Error

To use the non-derivative method, we need to know the
functional value at each point. However, for a general stochastic
system, it is almost impossible to get the exact value of g(a) for
each splitting a due to its dependence on the mean queue length
of each queue. In this subsection, we obtain the approximation
of g(a) by using the time average queue length to estimate the
mean queue length. To analyze the performance of the non-
derivative method, we need to get the estimation error for each
approximation. To that end, we first give the convergence rate
of time average queue length to the mean queue length for a
single queue (see Proposition 2). Then, we estimate the error
between the approximation of g(a) and its true value in the
probabilistic form (see Proposition 3).

For a single unreliable queue, let N be the number of failures
happening since t = 0 and YN be the time at which N th

failure happens for a single unreliable queue. The following
proposition characterizes the rate at which the time average
queue length converges to the mean queue length.

Proposition 2: For a single unreliable queue with non-zero
failure probability p, where both arrivals A[t] and services S[t]
are identically and independently distributed over time, and
E[A[t]] = λ and E[A2[t]] = ν < ∞, we have

Pr

{∣∣∣∣∣
1

YN

YN∑
t=1

Q[t]− E[Q̄]

∣∣∣∣∣ > ε

}
≤ hN (ε|λ, ν, p), (18)

where

hN (ε|λ, ν, p) := h1,N

(√
ε

2

∣∣∣∣p
)

+ h1,N

(
εp2

2λ(1− p)

∣∣∣∣p
)

+h2,N

(
ε

4p

∣∣∣∣λ, ν, p

)
+ h2,N

(√
ε

2

∣∣∣∣λ, ν, p

)
, (19)

h1,N (ε|p) :=

{
(1−p)(p+ε)2

Nε2 , if ε ≥ p
(1−p)(p+ε)2

Nε2 + (1−p)(p−ε)2

Nε2 , if ε < p
,

and

h2,N (ε|λ, ν, p) :=
(ν − 2λ2)p3 + (10λ2 − 3ν)p2 + (2ν − 14λ2)p + 6λ2

Nε2p4
.

Proof: The proof is based on the observation that this
system can be regarded as a renewal reward process (see
Appendix A). See our technical report [11] for details.
Remarks: 1. In a given stochastic system, for any given ε > 0,
we have lim

N→∞
hN (ε|λ, ν, p) = 0. Thus, we can use the time

average queue length to approximate the mean queue length at
arbitrary accuracy by observing sufficiently many failures N .

2. We note that, if all moments of A[t] are bounded, the
convergence rate of time average queue length to the mean
queue length is exponentially fast, but is hard to characterized
due to the complexity of queue length evolution. Nevertheless,



(18) is enough for us, since we focus on the convergence of
the proposed algorithm rather than its convergence rate.

Next, we give the approximation of g(a) and obtain its
error in the probabilistic form. Let Nl be the number of
failures occurring in queue l. Let N := (Nl)L

l=1. The next
proposition gives the approximation of g(a) with the error in
the probabilistic form.

Proposition 3: For a system with L unreliable queues, we
have

Pr {|ĝN(a)− g(a)| > ε} ≤
L∑

l=1

hNl

(
ε

Lpl

∣∣∣∣alλ, νl, pl

)
, (20)

where ĝN(a) :=
∑L

l=1 plf̂Nl
(alλ)+λ

∑L
l=1 plal, and f̂Nl

(alλ)
is the time average queue length during the interval [1, YNl

] at
queue l, that is, f̂Nl

(alλ) := 1
YNl

∑YNl
t=1 Ql[t].

Proof:

Pr {|ĝN(a)− g(a)| > ε}

= Pr
{∣∣∣∣

L∑

l=1

plf̂Nl
(alλ)−

L∑

l=1

plfl(alλ)
∣∣∣∣ > ε

}

≤ Pr

{
L∑

l=1

pl

∣∣∣f̂Nl
(alλ)− fl(alλ)

∣∣∣ > ε

}

≤
L∑

l=1

Pr
{

pl

∣∣∣f̂Nl
(alλ)− fl(alλ)

∣∣∣ >
ε

L

}

≤
L∑

l=1

hNl

(
ε

Lpl

∣∣∣∣alλ, νl, pl

)
, (21)

where the last inequality follows from Proposition 2.
Remark: By Proposition 2, we have

lim
Nl→∞

hNl

(
ε

Lpl

∣∣∣∣alλ, νl, pl

)
= 0.

Given any δ > 0, if we want
L∑

l=1

hNl

(
ε

Lpl

∣∣∣∣alλ, νl, pl

)
< δ,

we can choose Nl such that hNl

(
ε

Lpl

∣∣∣∣alλ, νl, pl

)
< δ

L . Thus,

we can get the approximation of g(a) at arbitrary accuracy by
observing sufficient many failures Nl for each queue l.

B. Non-Derivative method

Let Ω := {a :
∑L−1

l=1 al ≤ 1, al ≥ 0,∀l = 1, 2, ..., L −
1}. Note that Ω is an intersection of linearly constraints. In
the following proposed algorithm, we need to construct the
positive spanning sets B and D(ak) ⊆ B at each point ak

that conforms to Ω, that is, for some τ > 0, if for each x
in the boundary of Ω for which ‖x − ak‖ < τ , the tangent
cone TΩ(x) := closure{µ(y − x) : µ ≥ 0,y ∈ Ω} can be
generated by nonnegative linear combination of the columns of
D(ak). Paper [10] introduced the method to construct D(ak).
For example, if L = 2, we can choose D(ak) ≡ [1,−1]; if

L = 3, we can select D(ak) ≡ [I,−I,F], where I is an 2× 2
identity matrix and F = [1 − 1;−1 1]. Let Nk

l be the number
of failures happening at queue l during the kth iteration. Let
Nk := (Nk

l )L
l=1.

Pattern Search (PS) method:

Requirement: ρ ∈ (0, 1), lim
k→∞

∞∑

n=k

δn = 0 and lim
k→∞

εk

∆k
= 0,

as ∆k → 0.

(1) Initialization: choose any a0 ∈ Ω and ∆0 > 0. Given
any ε0 > 0 and δ0 ∈ (0, 1), compute N0 such that
Pr{|ĝN0(a0)− g(a0)| > ε0} ≤ δ0.

(2) Poll step: In the kth iteration, construct Mk , {ak +
∆kd : d ∈ D(ak)}. Choose εk > 0 and δk ∈ (0, 1), and
sequentially evaluate the functional value ĝNk(a′) for any
a′ ∈ Mk satisfying Pr{|ĝNk(a′) − g(ak)| > εk} ≤ δk

until some a′ ∈ Mk satisfying ĝNk(a′) < ĝNk(ak) is
obtained, or until all points in Mk are evaluated.

(3) Step size update: If the poll step produced an improved
point, i.e., ĝ(ak+1) < ĝ(ak), then ∆k+1 = ∆k; Oth-
erwise, ĝ(ak) ≤ ĝ(ak + ∆kd) for all d ∈ D(ak), set
ak+1 = ak and update ∆k+1 = ρ∆k. Increase k ← k+1,
and go back to the poll step.

Next, we will establish the convergence property of the PS
algorithm.

Lemma 2: The sequence of step sizes {∆k}∞k=0 produced by
the PS algorithm satisfy limk→∞∆k = 0, a.s..

Proof: It is easy to show that [9]
{

lim
k→∞

∆k > 0
}

=
∞⋃

n=1

∞⋃
m=1

∞⋂

k=m

{
∆k >

1
n

}
. (22)

Thus, we have

Pr
(

lim
k→∞

∆k > 0
)

= Pr

( ∞⋃
n=1

∞⋃
m=1

∞⋂

k=m

{
∆k >

1

n

})
. (23)

By using the subadditivity property of the probability measure,
we have

Pr

( ∞⋃

n=1

∞⋃

m=1

∞⋂

k=m

{
∆k >

1

n

})
≤

∞∑

n=1

Pr

( ∞⋃

m=1

∞⋂

k=m

{
∆k >

1

n

})
. (24)

By combining (23) and (24), we have

Pr
(

lim
k→∞

∆k > 0
)
≤

∞∑
n=1

Pr

( ∞⋃
m=1

∞⋂

k=m

{
∆k >

1
n

})

(a)
=

∞∑
n=1

Pr

(
lim

m→∞

∞⋂

k=m

{
∆k >

1
n

})

(b)
=

∞∑
n=1

lim
m→∞

Pr

( ∞⋂

k=m

{
∆k >

1
n

})
, (25)

where (a) follows from the fact that
⋂∞

k=m

{
∆k > 1

n

}
,∀m are

monotone non-decreasing and the property of the monotone
sequence of sets, and (b) follows from the continuity of the
probability measure for the monotonic sequences.



Next, let’s consider Pr
(⋂∞

k=m

{
∆k > 1

n

})
. Since ∆k is

non-increasing, if the event
⋂∞

k=m

{
∆k > 1

n

}
happens, then

there exists a k̄ ≥ m such that ∆k = ∆k̄,∀k ≥ k̄. Thus,
after k̄th iteration, the algorithm always evaluates a constant
finite number of points. Thus, at least one point belongs to
the sequence {ak}∞k=0 infinitely many times. In addition, since
∆k = ∆k̄,∀k ≥ k̄, we have εk(∆k) = εk̄(∆k̄) , εk̄,∀k ≥ k̄.
Hence if the event

⋂∞
k=k̄ {|ĝ(ak)− g(ak)| ≤ εk̄} happens, then

the sequence {ĝ(ak)}∞k=0 cannot be strictly monotone decreas-
ing, which contradicts the constructions of the algorithm. Thus,
if the event

⋂∞
k=k̄ {|ĝ(ak)− g(ak)| ≤ εk̄} happens, the event⋂∞

k=m

{
∆k > 1

n

}
won’t happen. Thus, we have

Pr

( ∞⋂

k=m

{
∆k >

1
n

})

≤ Pr

( ∞⋃

k=m

{|ĝ(ak)− g(ak)| > εk̄}
)

≤
∞∑

k=m

Pr (|ĝ(ak)− g(ak)| > εk̄)

≤
∞∑

k=m

δk. (26)

Thus, by taking the limit on the both sides of (26), we have

lim
m→∞

Pr

( ∞⋂

k=m

{
∆k >

1
n

})
≤ lim

m→∞

∞∑

k=m

δk = 0. (27)

Hence, we have

Pr
(

lim
k→∞

∆k > 0
)

= 0. (28)

By noting that ∆k ≥ 0,∀k, we have the desire result.
Next, we will show that the mean queue length is a convex

function of the arrival rate, which implies that g(a) is convex
and thus is directional differentiable [2].

Proposition 4: For a single queue with the failure probability
p, the mean queue length is a convex function of the arrival rate
under general arrival and service processes.

Proof: See Appendix C for the proof.
By Proposition 4, it is easy to show the convexity of g(a) over
Ω. Before stating the main convergence result, we need the
concept of refining subsequence introduced in [1].

Definition 3: (Refining subsequence) Consider a sequence
{ak}∞k=0 constructed by PS algorithm. We define the subse-
quence {ak}k∈K as the refining subsequence, if ∆k+1 < ∆k

for all k ∈ K, and ∆k+1 = ∆k for all k /∈ K.
Proposition 5: Let a∗ be a limit point of a refining sub-

sequence {ak}k∈K, constructed by PS algorithm. Let d be
any column of positive spanning set B along which ĝ(·)
was evaluated for infinitely many iterates in the subsequence
{ak}k∈K. Then, we have

Pr

{
g′(a∗;d) = lim sup

a→a∗,t↓0

g(a + td)− g(a)
t

≥ 0

}
= 1. (29)

Proof:

Pr

{
0 > g′(a∗;d) = lim sup

a→a∗,t↓0

g(a + td)− g(a)
t

}

≤ Pr
{

0 > lim sup
k∈K

g(ak + ∆kd)− g(ak)
∆k

}

= Pr
{

0 > lim sup
k∈K

(
ĝ(ak + ∆kd)− ĝ(ak)

∆k

+
g(ak + ∆kd)− ĝ(ak + ∆kd) + ĝ(ak)− g(ak)

∆k

)}

(a)

≤ Pr
{

0 > lim sup
k∈K

(
g(ak + ∆kd)− ĝ(ak + ∆kd)

∆k

+
ĝ(ak)− g(ak)

∆k

)}
,

where (a) follows from that ĝ(ak + ∆kd) ≥ ĝ(ak), since
{ak}k∈K is a refining subsequence. Let Fk be the event that

−2εk

∆k
≤ g(ak + ∆kd)− ĝ(ak + ∆kd) + ĝ(ak)− g(ak)

∆k
. (30)

Then, if lim infn→∞ Fn happens, that is, ∃n > 0 such that
Fk happens for all k ≥ n, then

0 = lim sup
k∈K

−2εk

∆k

≤ lim sup
k∈K

g(ak + ∆kd)− ĝ(ak + ∆kd) + ĝ(ak)− g(ak)
∆k

.

Thus, we have
{

0 > lim sup
k∈K

g(ak + ∆kd)− ĝ(ak + ∆kd) + ĝ(ak)− g(ak)
∆k

}

⊆ (lim inf
k∈K

Fk)c = lim sup
k∈K

Fc
k. (31)

Hence, we have

Pr {0 > g′(a∗;d)} ≤ Pr{lim sup
k∈K

Fc
k} ≤ Pr{ lim

n∈K
∪k≥nFc

k}

= lim
n∈K

Pr{∪k≥nFc
k} ≤ lim

n∈K

∑

k≥n

Pr{Fc
k}. (32)

Since

Pr{Fc
k}

=Pr {−2εk > g(ak + ∆kd)− ĝ(ak + ∆kd) + ĝ(ak)− g(ak)}
≤Pr {−εk > g(ak + ∆kd)− ĝ(ak + ∆kd)}

+ Pr {−εk > ĝ(ak)− g(ak)}
≤Pr {|g(ak + ∆kd)− ĝ(ak + ∆kd)| > εk}

+ Pr {|ĝ(ak)− g(ak)| > εk} ≤ 2δk, (33)

we have

Pr

{
0 > g′(a∗;d) = lim sup

a→a∗,t↓0

g(a + td)− g(a)
t

}

≤ 2 lim
n→∞

∑

k≥n

δk = 0. (34)
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Fig. 4. Convergence of the PS algorithm

Hence, we have the desire result.
Remark: In fact, this result does not require the convexity of
g. Proposition 5 continues to hold if g is locally Lipschitz
continuous, which guarantees the existence of its directional
derivative [3].

Corollary 1: If g is strictly differentiable at a limit point a∗

of a refining subsequence, and if the selection of the positive
spanning sets D(ak) conforms to Ω for a τ > 0, then a∗ is
a KKT point almost surely, that is, ∇g(a∗)T x ≥ 0 for all
x ∈ TΩ(a∗), and −∇g(a∗) ∈ NΩ(a∗) hold with probability 1,
where NΩ(x) := {y : ∀y ∈ TΩ(x),yT x ≤ 0}.

Proof: The proof is similar to the argument in [1].
Remarks: 1. Here, we only require that the objective function
g is differentiable at the limiting point rather than being
continuously differentiable, which is required in [17][8].

2. Even if g is not differentiable at a∗, we still have desirable
property that g′(a∗;d) ≥ 0 for all d ∈ B from Proposition 5.

V. SIMULATIONS

In this section, we perform numerical simulations to confirm
that the proposed PS algorithm indeed can converge to the
optimal point. We consider L = 2 unreliable queues. We
assume that the amount of arrivals and the amount of services
follow the Poisson distribution with mean λ = 1 and µ = [3, 3].
Each queue i (i = 1 or 2) fails with probability pi at each
time slot. We consider the symmetric case p = [0.2, 0.2] and
asymmetric case p = [0.2, 0.01]. We take ρ = 0.8 in the PS
algorithm. The upper bound in Proposition 3 is too pessimistic,
which requires huge N even for achieving small probabilistic
error. In this simulation, we heuristically increase N by 100
starting from 10000 at each iteration. In the symmetric case, it
is obvious that the optimal splitting fraction for queue 1 is 0.5;
while in the asymmetric case, we use the brute-force search
to get the optimal splitting fraction for queue 1 is close to 0.
From figures 4(a) and 4(b), we can observe that the proposed PS
algorithm can gradually converge to the optimal point, however
slowly.

VI. CONCLUSIONS

In this paper, we investigated the problem of efficient routing
for unreliable networks that are prone to probabilistic buffer
failures. We first revealed the advantage of using constant
splitting rule (CSR) in such a setup over the more traditional

choices of Join the Shortest Queue (JSQ) or Randomized
Splitting (RS). This motivated us to obtain the optimal splitting
fraction that solves the optimization problem with the objective
function depending on the mean queue length.

Realizing the difficulty in getting the exact expression for
the objective function under general arrival and service pro-
cesses, we use non-derivative methods to solve this optimization
problem by using the time average queue length to approx-
imate the mean queue length. By adaptively controlling the
approximation error, we show that the proposed algorithm can
almost surely converge to an optimal splitting fraction under
mild conditions.
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APPENDIX A
BASIC PROPERTIES FOR A SINGLE UNRELIABLE BUFFER

In this section, we study some basic properties for a system
consisting of a single server and an associated unreliable queue.
Since we only consider a single queue, we will omit the
subscript in this section. From the queue length evolution (1),



it is easy to see that {Q[t]}t≥0 forms a Markov Chain. The
following lemma shows that the stationary distribution of the
underlying Markov Chain exists.

Lemma 3: For any non-zero failure probability p, if both
second moment of arrivals and services are bounded (i.e.,
E[A2[t]] < ∞ and E[S2[t]] < ∞), then there exist a random
variable Q̄ with E[Q̄] < ∞ such that

lim
t→∞

E[Q[t]] = E[Q̄]. (35)

Proof: See our technical report [11] for the proof.
The existence of stationary distribution implies that the

underlying Markov Chain is ergodic and thus, by the Ergodic
Theorem [12], we have

lim sup
T→∞

1
T

T∑
t=1

Q[t] = E[Q̄], a.s. (36)

Next, we would like to determine the rate that the time
average queue length converges to the mean queue length.
Normally, it is hard to characterize the convergence rate of the
Ergodic Theorem. However, in our setup, we can estimate the
convergence rate by regarding it as a renewal reward process.
When a failure happens, all the data in the queue will be
dropped and thus we can take each failure as a renewal. Let
Xn be the length of nth renewal. Note that Xn is a geometric
random variable with parameter p. Let Yn be the time that nth

renewal occurs and Y0 = 0. Let Rn be the total summation
of queue length between the (n− 1)th and nth renewals, that
is, Rn =

∑Yn

t=Yn−1+1 Q[t]. Let N be the number of renewals
since Y0 = 0. The next Lemma shows that the first and second
moment of Rn are bounded.

Lemma 4: The first and second moment of the earned reward
Rn between the (n− 1)th and nth renewals are bounded, i.e.,

E[Rn] ≤ λ(1− p)
p2

E[R2
n] ≤ (ν − 2λ2)p3 + (10λ2 − 3ν)p2 + (2ν − 14λ2)p + 6λ2

p4

Proof: See our technical report [11] for the proof.
Since E[Xn] < ∞ and E[Rn] < ∞, according to the strong

law of large numbers, we have

lim
N→∞

1
YN

N∑
n=1

Rn = lim
N→∞

N

YN

1
N

N∑
n=1

Rn

= lim
N→∞

1
1
N

∑N
n=1 Xn

1
N

N∑
n=1

Rn =
E[Rn]
E[Xn]

, a.s. (37)

On the other hand,

lim
N→∞

1
YN

N∑
n=1

Rn = lim
N→∞

1
YN

N∑
n=1

Yn∑

t=Yn−1+1

Q[t]

= lim
N→∞

1
YN

YN∑
t=1

Q[t] = E[Q̄] a.s., (38)

where the last step follows from equation (36). Since E[Q̄] <

∞, we have E[Q̄] = E[Rn]
E[Xn] . Note that it is easier to investigate

the convergence rate of (37) than that of (38).

APPENDIX B
PROOF FOR LEMMA 1

Proof: Recall that E[Q̄] = E[Rn]
E[Xn] . Let’s consider the term

E[Rn].

E[Rn] = E




Yn∑
t=Yn−1+1

Q[t]


 (a)

= E

[
Xn∑
t=1

Q[t]

]
(b)
= E

[
Xn−1∑

t=1

Q[t]

]
,

where (a) follows from the fact that the reward during the
first renewal has the same distribution as that during the nth

renewal; (b) follows the fact that queue length becomes zero
when a renewal occurs. Since there is no failure during the
renewal interval, the queue length evolution for the constant
arrivals and constant services is as follows:

Q[t] = (Q[t− 1] + λ− µ)+, t = 1, 2, ..., Xn − 1, (39)

where Q[0] = 0. Thus, we have

Q[t] = t(λ− µ)+,∀t = 1, 2, ..., Xn − 1. (40)

Hence, we have

E[Rn] = E

[
Xn−1∑
t=1

t(λ− µ)+
]

=
1
2
(λ− µ)+E[X2

n −Xn].

Since Xn is a geometric random variable with parameter p, we
have E[Xn] = 1

p and E[X2
n] = 2−p

p2 . Thus, we have

E[Rn] =
1− p

p2
(λ− µ)+. (41)

Thus, we have

E[Q̄] =
E[Rn]
E[Xn]

=
1− p

p
(λ− µ)+. (42)

APPENDIX C
PROOF FOR PROPOSITION 4

Proof: The proof is similar to [19] and is by induction on
Q[t] using the following identities.

Q[t + 1] =((Q[t] + λxt)(1− zt)− µyt)+

=
{

max{0, Q[t] + λxt − µyt} , if zt = 0;
0 , if zt = 1. (43)

If we assume that Q[t] is convex in λ, we can see that Q[t+1]
is also convex in λ. Since the theorem is true for any values
of xt, yt and zt, it is also true when these are realizations of
random variables. Thus, the mean queue length is a convex
function of the arrival rate.


