
1/8/2007 - Extra Credit Copyright 2006 - Joanne DeGroat, ECE, OSU 1

Extra Credit Project
Modification that can be done to the datapath.

1/8/2007 - Extra Credit Copyright 2006 - Joanne DeGroat, ECE, OSU 2

Extra Credit
One writeup – 2 parts for extra credit
Each part can raise your final grade 1 ½ %
Part 1 – Add a shifter to the datapath
Part 2 – Beyond integrating a shifter, use it to
do integer multiplication (8-bit by 8-bit for a
16-bit result)

1/8/2007 - Extra Credit Copyright 2006 - Joanne DeGroat, ECE, OSU 3

The architecture
Block diagram
Dashed line shows
interface
Note added control
signals and location of
shift unit

Reg 0

Reg 1

Reg 2

Reg 15

A BUS BBUS

AregNo
Aload

Adrive

BregNo
Bload
Bdrive

Ainput Binput

ALU

A_ALUload

A_ALUdrive

B_ALUload

B_ALUdrive

oper

C
N
Z

Cin

Shifter
Shift_op

Shift_dist

A_ALUsel

Ainput latch

Binput latch

1/8/2007 - Extra Credit Copyright 2006 - Joanne DeGroat, ECE, OSU 4

From the writeup
 Add a shifter. The shifter is connected to the A input latch so it can only be loaded from the
ABUS. The A_ALUsel controlls a multiplexer that can either select the latched input or the
shifter output. A value of ‘1’ on A_ALUsel selects the latch input, and a value of ‘0’ selects the
shifter output.

The possible shift operations are logical shift left, logical shift right, arithmetic shift left,
arithmetic shift right, rotate left, rotate right, rotate left with carry, and rotate right with carry.
The mnemonics are (lsl,lsr,asl,asr,rol,ror,rolwc,rorwc). Their effected is illustrated below. In the
following diagram the large rectangle is the register and the small square represents the C bit of
the Flags

1/8/2007 - Extra Credit Copyright 2006 - Joanne DeGroat, ECE, OSU 5

The operations
Typical shift operations

Logical shifts
Left, right

Arithmetic shifts
Left and right

Rotates left and right
with carry and without
carry

lsl

lsr

asl

asr

rol

ror

rolwc

rorwc

'0'

'0'

lsb

msb

1/8/2007 - Extra Credit Copyright 2006 - Joanne DeGroat, ECE, OSU 6

The writeup continued
The output of the shifter goes into the A input selector multiplexer. The shfiter will always
affect the C bit of the Flags as shown above. If the ALU operation is op_A and the ALU A input
is selected to be the shifter, then the carry output of the ALU/shifter is determined by the shift
operation. Any other ALU operation will have the effect of overriding the C bit generated by the
shifter and causing the C bit to be set accoring to the ALU operation.

The N and Z flags are set accoring to the ALU_operation. Note that the result of a shift
operation will pass through the ALU using the ALU operation op_A. This will cause the Z and
N flags to be set and the C bit will come from the shifter. During other types of operations, such
as a multiply step, the ALU operation of the step will determine the state of the flags.

1/8/2007 - Extra Credit Copyright 2006 - Joanne DeGroat, ECE, OSU 7

Continued
The testbench for this will be on the web and has
been modified to include the shift operation.

1) So your first task is to modify your datapath to include a shifter that can perform the above
functions and integrate it into the datapath as shown. The testbench for this step produces the
appropriate select signal for the A_ALUsel signal. It runs through the same tests that it did in the
previous project step and then runs through step to test the correct operation of the shfiter.

You will need a type for the shifter operations in your support package. The testbench assumes
that the mnemonic names above are used and the type will be called shift_operations

1/8/2007 - Extra Credit Copyright 2006 - Joanne DeGroat, ECE, OSU 8

The second part
This part is a little more challenging
You modify the control by writing a
procedure like shiftop to do integer
multiplicaiton
The source for the operands are s1reg and
s2reg with the result put back in s2reg
You will need a multiply control register for
one of the operands which is already set up.

1/8/2007 - Extra Credit Copyright 2006 - Joanne DeGroat, ECE, OSU 9

More info from the assignment

2) Write a microcode procedure to do integer multiplication. By a microcode routine I mean a
routine such as the tworegop, oneregop, shiftop procedures. Your routine will be passed the
multiplier and multiplicand register numbers, s1reg, s2reg, and put the result back in register
s2reg. On the first cycle you will have to load the multiply control register (already set up in the
bus_cycle procedure) and then use its values to do the multiply.
Other information:
The operation multiplies the 8 lsb of each resiter and puts the 16 bit result in the 2nd reg.
The operation should take a constant number of cycles.
The output of the ALU can be driven on the B bus and latched back into the B input, acting as an
accumulator.

1/8/2007 - Extra Credit Copyright 2006 - Joanne DeGroat, ECE, OSU 10

cont
Enter calls to your procedure as indicted to do the following 8 multiplications as indicated in the
testbench.

 R0 x R1 --> R1 R2 x R3 --> R3 R4 x R5 --> R5
 R6 x R7 --> R7 R8 x R9 --> R9 R10 x R11 --> R11
 R12 x R13 --> R13 R14 x R15 --> R15

This is to test your modification

1/8/2007 - Extra Credit Copyright 2006 - Joanne DeGroat, ECE, OSU 11

The bus cycle procedure
This procedure
runs the busses
and internal
transfer of data

The call to PROCEDURE bus_cycle is

bus_cycle(
 A_regldi - TBLoad or Load - Load value on ABUS into register Aregno
 Drive - Drive Aregno value onto ABUS
 Idle or Accum - Register do not drive or load from ABUS
 A_regno -
 A_aluldi - Load - Latch value from ABUS for Ainput of ALU
 Drive - Drive value of ALU output onto ABUS
 Idle, TBLoad, Accum - ALU does not latch or drive ABUS
 A_aluinsel - ‘1’ - A input to ALU is latched value, ‘0’ shifted value
 A_BUS_VAL - Value placed on ABUS by test bench if A_regldi = TBLoad
 A_BUS_EXP - Expected value on ABUS
 B_regldi, B_regno - same as for ABUS side but for BBUS
 B_aluldi - same as ABUS side except
 Accum causes ALU to drive BBUS and then Latch that value.
 B_BUS_VAL, B_BUS_EXP - same as for ABUS but for BBUS
 Shf_op - the shift operation to be performed - if the shifter is not used it can
 be any value
 Shf_dist - the distance of the shift - if the shifter is not used it can be any value
 MCR_ldi - multiply control register loading - if Load, MCR is loaded from the
 8 lsb of the A bus, otherwise no action.
 alu_op - the alu_operation to be performed - if the alu is not used can be any value
 Cinval - the value of the carry input to the alu and shifter this cycle
 exp_cc - the index for the expected condition code
 checkbus - if TRUE then the value driven on the bus during Drive signals being
 low is checked as well as the flags are checked.
 if FALSE the actual value on the bus is not checked.
)

1/8/2007 - Extra Credit Copyright 2006 - Joanne DeGroat, ECE, OSU 12

Example of use of procedure bus_cycle
For example the two register operation does the following

 Aalu Shift Shift
Cycle ABUS BBUS insel AluOP Cin OP Dist
 1 R(Aregno)->Aalu R(Bregno)->Balu ‘1’ oper Cinval -- --
 2 idle aluout->R(Bregno) ‘1’ oper Cinval -- --

and has calles to the bus_cycle procedure as seen in the testbench.

To do a shift operation, the following is needed.

 Aalu Shift Shift
Cycle ABUS BBUS insel AluOP Cin OP Dist
 1 R(regno)->Aalu Idle ‘0’ op_A Cinval sop dist
 2 idle aluout->R(Bregno) ‘1’ op_A Cinval sop dist

Set up a similar table for the multiply operation which will make coding the procedure much
easier. Do not check the contents on the bus during operation of your multiply routine, i.e., call
bus_cycle with the checkbus parameter as FALSE. Check of the correct opertion is done on the
subsequent dump of the registers.

	Extra Credit Project
	Extra Credit
	The architecture
	From the writeup
	The operations
	The writeup continued
	Continued
	The second part
	More info from the assignment
	cont
	The bus cycle procedure
	Example of use of procedure bus_cycle

