
EE762 Introduction to VHDL

Introduction to VHDL

HDL - Hardware Description Language
 A language that allows the description of hardware
 for documentation, simulation, synthesis, ...

To use HDLs you need a CAD system
Major CAD systems support VHDL, Verilog, SystemC

 Cadence - Leapfrog (VHDL, Verilog)
 Mentor Graphics – ModelTech is subsidiary
 Model Technology

– ModelSim – VHDL, Verilog, System C
 Altera (VHDL compilation - FPGA native simulation)
 Xilinx (VHDL compilation - FPGA native simulation)

ALL SYSTEMS

Source Files

VHDL
Library Files

Analysis
(Compile)

Simulation Synthesis

Introduction to VHDL Copyright © Joanne E. DeGroat, ECE, OSU - 1
-

EE762 Introduction to VHDL

A First Example

Desire to do a VHDL Description of a full adder.
All devices consist of
 an interface

 and an operational part.
Interface - THE INPUTS AND OUTPUTS
Operational Part - THE FUNCTIONAL BEHAVIOR

VHDL Entity Design Unit:

 ENTITY unit_name IS
 [port_clause]
 END unit_name;

For a Full Adder would have:

 ENTITY full_adder IS
 PORT(a,b,cin : IN BIT;
 sum : OUT BIT;
 cout : OUT BIT);
 END full_adder;

THE PORT portion is named a PORT CLAUSE

What is specified in the clause are signals that have scope
over all architectures of this entity.

Introduction to VHDL Copyright © Joanne E. DeGroat, ECE, OSU - 2
-

EE762 Introduction to VHDL

Signals/Port Modes/Types

PORT(a,b,cin: IN BIT; sum: OUT BIT; cout: OUT BIT);

Signals: The names referenced in the PORT CLAUSE are
signals.

 a, b, cin, sum, cout these represent the wires of the
physical unit.

 SIGNALS are objects that have both a value and a
time component.

Port Modes:

 In this example you just have inputs and outputs. The
Port Mode gives the direction of the signal and also
specifies the direction of signal transfer.

Mode:

 IN - signal can only be used (i.e., can only be read or
can only appear on the right-hand-side of an equation).

 OUT - signal value can only be written. Cannot be
seen or used in the design as it is an output and therefore
external.

 INOUT - signal can be both written to (assigned to)
and read (used). However, most signals of this type are

Introduction to VHDL Copyright © Joanne E. DeGroat, ECE, OSU - 3
-

EE762 Introduction to VHDL

connected to busses and therefore this signal mode requires
a resolved signal.

 BUFFER - signal value can be written to and used
internally in the design.

BASIC TYPES (built in – part of the standard)

TYPE BIT - your typical binary type with values of ‘0’
and ‘1’.

 Declaration for the type is
 TYPE BIT is (‘0’,’1’)

USE of SIGNALS

 a <= ‘0’;
 b <= x AND y OR z;

Note that the value is either ‘0’ ir ‘1’

Introduction to VHDL Copyright © Joanne E. DeGroat, ECE, OSU - 4
-

EE762 Introduction to VHDL

Architectural Design Unit

Specifies operational part

 ARCHITECTURE identifier OF entity_id IS

 [declarations]

 BEGIN

 [architecture_statement_part]

 END [identifier];

[architecture_statement_part] -

 Any concurrent statement of the language

Example dataflow architecture of full adder:

ARCHITECTURE one OF fulladder IS
BEGIN
 sum <= a XOR b XOR cin;
 cout <= (a AND b) OR (a AND cin) OR (b AND cin);
END;

Statements between BEGIN and END are concurrent signal
assignment statements.

Introduction to VHDL Copyright © Joanne E. DeGroat, ECE, OSU - 5
-

EE762 Introduction to VHDL

Consider a 4 bit Adder

A0A1A2A3 B1 B0B3 B2

SUM0SUM1SUM2SUM3

CinCout

This is the hardware to be modeled in VHDL

Introduction to VHDL Copyright © Joanne E. DeGroat, ECE, OSU - 6
-

EE762 Introduction to VHDL

Multibit Adder Example
Can model multibit adder using a dataflow style
1) Bit vectors for ports and individual signals internally
2) Bit vectors for ports and bit vectors internally.
The Entity Design Unit:

 ENTITY mb_adder IS
 PORT (a,b : IN BIT_VECTOR(3 downto 0);
 cin : IN BIT; cout : OUT BIT;
 sum: OUT BIT_VECTOR(3 downto 0));
 END mb_adder;

The First Dataflow Architecture : (bit operation)

ARCHITECTURE one OF mb_adder IS
 SIGNAL c : BIT_VECTOR (4 downto 0);
BEGIN
 c(0) <= cin;
 sum(0) <= a(0) XOR b(0) XOR c(0);
 sum(1) <= a(1) XOR b(1) XOR c(1);
 sum(2) <= a(2) XOR b(2) XOR c(2);
 sum(3) <= a(3) XOR b(3) XOR c(3);
 c(1) <= (a(0) AND b(0)) OR (a(0) AND c(0)) OR
 (b(0) AND c(0));
 c(2) <= (a(1) AND b(1)) OR (a(1) AND c(1)) OR
 (b(1) AND c(1));
 c(3) <= (a(2) AND b(2)) OR (a(2) AND c(2)) OR
 (b(2) AND c(2));
 c(4) <= (a(3) AND b(3)) OR (a(3) AND c(3)) OR
 (b(3) AND c(3));
 Cout <= c(4);
END one;

Introduction to VHDL Copyright © Joanne E. DeGroat, ECE, OSU - 7
-

EE762 Introduction to VHDL

A Second Dataflow Architecture: (vector operations)

ARCHITECTURE two OF mb_adder IS
 SIGNAL c : BIT_VECTOR (4 downto 0);
BEGIN
 c(0) <= cin;
 sum <= a XOR b XOR c(3 downto 0);
 c(4 downto 1) <= (a(3 downto 0) AND b(3 downto 0))
 OR (a(3 downto 0) AND c(3 downto 0)) OR
 (b(3 downto 0) AND c(3 downto 0));
 Cout <= c(4);
END two;

Architecture “two” use vector operation on the signals.

Note the power of this design method.
Carry ripple through repeated evaluation of the equation as
whenever a signal on the right-hand-side changes, the
equation is re-evaluated and a new value scheduled for
assignment to the signal driven.

Introduction to VHDL Copyright © Joanne E. DeGroat, ECE, OSU - 8
-

EE762 Introduction to VHDL

Operations on Type BIT

Consider the following declaration

 SIGNAL x, y : BIT;

Logical Operations:

 x AND y Aslo have shift operations
 x OR y arithmetic shifts ASR
 x NAND y
 x NOR y logical shifts LSL
 x XOR y
 x XNOR y
 NOT x

Note: For AND OR NAND NOR the right operator is
evaluated only if the value of the left operator is not
sufficient to determine the result.

Assignment Operators:
 For signals <=
 For variables :=

Relational Operators:
 (x = y) (x /= y) (x <= y) (x >= y)

 (x = ‘1’) AND (y = ‘0’)

Introduction to VHDL Copyright © Joanne E. DeGroat, ECE, OSU - 9
-

EE762 Introduction to VHDL

Structural Example

Again consider the full adder.

Before doing a structural description must have the
components that are going to be wired together. These
must be written and compiled into the library. Although
not shown here, each would have an architecture describing
its behavior.

Having the following entity declarations for the
components:

ENTITY and2 IS
 PORT (A,B : IN BIT; Z : OUT BIT);
END and2;

ENTITY xor2 IS
 PORT (A,B : IN BIT; Z : OUT BIT);
END xor;

ENTITY or3 IS
 PORT (A,B,C : IN BIT; Z : OUT BIT);
END or3;

Introduction to VHDL Copyright © Joanne E. DeGroat, ECE, OSU -
10 -

EE762 Introduction to VHDL

A Structural Description

ARCHITECTURE structural OF full_adder IS
-- Must declare the components that are to be used
COMPONENT and2
 PORT (A,B : IN BIT; Z : OUT BIT);
END COMPONENT ;
COMPONENT xor2
 PORT (A,B : IN BIT; Z : OUT BIT);
END COMPONENT ;
COMPONENT or3
 PORT (A,B,C : IN BIT; Z : OUT BIT);
END COMPONENT ;
-- State which library to find them in and which architecture to use.
FOR ALL : and2 USE ENTITY WORK.and2(behavioral);
FOR ALL : xor2 USE ENTITY WORK.xor2(behavioral);
FOR ALL : or3 USE ENTITY WORK.or3(behavioral);
-- Declare local signals required.
SIGNAL addt. ct1, ct2, ct3 : BIT;
BEGIN
 G1: xor2 PORT MAP(a,b,addt);
 G2: xor2 PORT MAP(addt, cin, sum);

 G3: and2 PORT MAP(a,b,ct1);
 G4: and2 PORT MAP(a,cin,ct2);
 G5: and2 PORT MAP(b,cin,ct3);

 G6: or3 PORT MAP(ct1,ct2,ct3,cout);

END Structural;

Introduction to VHDL Copyright © Joanne E. DeGroat, ECE, OSU -
11 -

EE762 Introduction to VHDL

 Can use the Full Adder to Structurally Make a
Multibit Adder

The Entity Design Unit:

 ENTITY mb_adder IS
 PORT (a,b : IN BIT_VECTOR(3 downto 0);
 cin : IN BIT; cout : OUT BIT;
 sum: OUT BIT_VECTOR(3 downto 0));
 END mb_adder;

The Architecture
ARCHITECTURE structural OF mb_adder IS
-- Must declare the components that are to be used
 COMPONENT full_adder
 PORT(a,b,cin : IN BIT;
 sum : OUT BIT;
 cout : OUT BIT);
 END COMPONENT;
 FOR ALL full_adder USE ENTITY
 work.full_adder(structural);
 SIGNAL ic1,ic2,ic3 BIT;
BEGIN
 U0: full_adder(a(0),b(0),cin,ic1,sum(0)):
 U1: full_adder(a(1),b(1),ic1,ic2,sum(1)):
 U2: full_adder(a(2),b(2),ic2,ic3,sum(2)):
 U3: full_adder(a(3),b(3),ic3,cpit,sum(3)):
END structural;

Introduction to VHDL Copyright © Joanne E. DeGroat, ECE, OSU -
12 -

