
© 2009 – Team Butterworth

From: Team Butterworth
 The Ohio State University
 154 W. 12th Ave.
 Columbus, OH 43210

Date: March 2, 2009

Subject: Proposal for Digital Stimulus/Monitor Unit

To: Professor Joanne E. DeGroat
 205 Dreese Laboratories
 Department of Electrical Engineering
 2015 Neil Avenue
 Columbus, OH 43210

Dear Professor DeGroat:

Team Butterworth is pleased to submit the attached proposal for the Digital Stimulus/Monitor
Unit (DSMU). Team Butterworth is comprised of the top senior students in the Electrical and
Computer Engineering Department at The Ohio State University, with a breadth of knowledge
perfectly suited for this project. We understand the urgency of completing the DSMU before
June. We at Team Butterworth can and will meet all the requirements of this important project.
 The students of Team Butterworth are prepared to design a new DSMU, and we look
forward to your reply.

Sincerely,

Team Butterworth

Encl: Proposal

© 2009 – Team Butterworth

Digital Stimulus/Monitor Unit Proposal
Team Butterworth

Due Date: Friday, March 13th

© 2009 – Team Butterworth

Abstract
This report outlines a proposal for the design and implementation of a digital

stimulus/monitor unit (DSMU) that will measure and output digital signals at a rate of up to 5

MHz The design is based around a Spartan 3 FPGA, host computer software, and a USB

interface, which will together carry out all of the unit’s needed functions. The project will be

compartmentalized into these three major components, from the point of view of design and

functionality. The Spartan 3 was chosen as the basis of the project due to its high speed and

relatively low cost, which make it an attractive option. A BASYS Evaluation Board will be used,

complete with this FPGA and a convenient API for USB 2.0 communication. The input or

output status of each of the eight FPGA ports will be chosen with tri-state buffers and a select

pin, allowing for fast and easy configuration.

 USB 2.0 will be used to communicate with the host, with the help of the Digilent Port

Communications API. Communication will occur through a custom protocol, based on several

different functions dealing with the transmission of data back and forth between the host and

FPGA.

 The host software will be created in using the Qt 4.4 open-source application

development framework, which will permit the use of C++ as the development language. The Qt

framework will allow the team to quickly develop GUI applications, through is GUI layout

software, Qt Designer. The resulting software will provide the user with a graphical interface,

which will allow for the configuration of the ports as inputs or outputs, and will allow the user to

specify output waveforms and their frequencies. Both inputs and outputs will be monitored and

displayed graphically for the user.

 A general plan and schedule for project development are laid out in the report; the project

will be fully designed and implemented over the course of the ten-week quarter. The financial

aspects of the plan are examined as well – the total cost will be around $90.

 © 2009 – Team Butterworth i

Table of Contents
List of Figures ... ii

List of Tables .. ii

1. Introduction ... 1

1.1. Purpose ... 1

1.2. Background .. 1

1.3. Scope .. 2

2. Discussion ... 3

2.1. Approach .. 3

2.1.1. Hardware ... 3

2.1.2. Protocol .. 9

2.1.3. Software ... 11

2.2. Result .. 15

2.3. Statement of Work ... 16

3. Resources .. 17

3.1. Personnel .. 17

3.2. Facilities / Equipment ... 18

4. Costs .. 18

4.1. Financial ... 18

4.2. Timeline ... 19

5. Conclusion .. 21

5.1. Summary .. 21

6. Contact .. 21

7. Bibliography ... 22

Appendix A: Host Software Source Code and Documentation ... A0

Appendix B: Project Timeline .. B0

 © 2009 – Team Butterworth ii

List of Figures
Figure 1: Approach Breakdown .. 3
Figure 2: Tri-State Buffer Circuit ... 4
Figure 3: State Diagram for USB Input Machine ... 7
Figure 4: State Diagram for USB Output Machine .. 8
Figure 5: State Diagram for Generic Pin State Machine .. 9
Figure 6: Configuration GUI .. 11
Figure 7: I/O Status GUI ... 12
Figure 8: Thread Interaction ... 13
Figure 9: Breakdown of Construction Costs ... 19

List of Tables
Table 1: Protocol Functions .. 11
Table 2: Weekly Task Breakdown .. 20

1
© 2009 – Team Butterworth

1. Introduction

1.1. Purpose

This document proposes the redesign of an electronic device to interface digital input and

output signals to a Device Under Test (DUT). The proposed device, a Digital Stimulus/Monitor

Unit (DSMU), is needed to support research thrusts in the area of high frequency digital circuit

design, specifically in Professor Degroat’s embedded systems lab. This document outlines both

the hardware and software development strategies proposed to realize this device.

1.2. Background

The design of high speed digital logic circuitry is often hindered by the designer’s ability

to debug its operation. The complex dependencies between a myriad of rapidly changing system

states makes it difficult to apply traditional approaches such as scoping the system output.

Additionally, it is often desirable to decompose digital systems into smaller, easier to manage

sub-components, building a complete solution on multiple layers of logical abstraction. This

common design methodology creates the need for each sub-component designer to develop test

drivers or stubs, imitating the intended behavior of interfaced sub-components. The design of a

system to easily provide such a configurable interface would greatly assist in the development of

high speed digital systems.

 It is desired for the DSMU to interface eight 5V digital I/O signals to a DUT at

frequencies of up to 5MHz. The DSMU should be a portable unit, interfaced to a Windows host

through a USB 2.0 High Speed connection. Achieving the full 5MHz operation with real-time

USB communication presented the most difficulty in previous implementations, and presents the

largest area for improvement on this redesign. The host should be able to fully qualify the

2
© 2009 – Team Butterworth

operation of each port. This includes the ability to specify its frequency, and direction (input or

output). In addition, the host should provide an interface to control the output waveforms. It

should support both outputs of a specific duty cycle as well as repeating complex waveforms.

The signals sent and received by the Digital Stimulus Monitor Unit should be displayed

graphically by the host.

 Information on the previous implementation of the DSMU will serve as a starting point

for the redesign. The earlier design was based on the use of a PIC microcontroller and achieved

an operation frequency of 12 kHz, the main target for specification improvement in the upgrade.

The last design improved upon the base specifications by making all eight ports configurable as

inputs or outputs, a feature that is hoped to be carried through to the present model. The design

made use of a custom circuit board, which is hoped to be replaced with a BASYS project board

meant for use with an FPGA and USB 2.0. The first implementation’s source code is also

available as a basis for implementing a GUI and will be studied for other insights that it may

provide. Where the old design works well, such as the way its GUI was laid out, it will be used

as a model; where it has room for improvement, as in its inability to display the I/O data, targets

for upgrading the design are found.

1.3. Scope

This proposal addresses the development of the DSMU hardware and software systems to

interface with a variety of DUTs as well as the budget, resources, and timeline allotted for this

project. It does not however include the development of any test drivers, or the imitation of any

specific devices. Rather, it aims to address the development of a general interface that makes the

implementation of such test drivers a trivial matter.

3
© 2009 – Team Butterworth

2. Discussion

2.1. Approach

The approach of Team Butterworth will be based around three main development areas,

the FPGA Hardware, Communication Protocol, and Host Software. This overall breakdown is

shown in Figure 1.

Figure 1: Approach Breakdown1

2.1.1. Hardware
It is proposed that the unit be upgraded by including a Xilinx Spartan-3 FPGA to replace

the previously installed PIC. This particular family of FPGA will be used because of its high

speed characteristics and low cost. With the use of USB 2.0 for transfer between the FPGA and

the host, the FPGA will be capable of transferring data at 480 Mbps. This will allow the DSMU

to operate at or above the specified 5 MHz frequency, while the original PIC design only

operated at a maximum of 12 KHz.

The Spartan-3 FPGA that will be used to implement the DSMU is the XC3S100E-

4TQ144C, which offers 240 configurable logic blocks (CLBs) with a maximum 108 user I/O

pins. This feature will all 8 channels of the DSMU selectable as an input or output, depending

on the user’s needs, similar to the configuration of the previous design. This is an improvement

on the original design requirement of two programmable channels. This feature will be

1 Images from www.123macmini.com (USB Cable) and www.clker.com (Computer Clip Art)

4
© 2009 – Team Butterworth

accomplished by connecting both of the FPGA’s input and output pins for a single data channel

together. Two tri-state buffers, with an additional select pin, will be used to ensure that only one

of the FPGA’s pins will be connected to the banana plug. This sub-circuit is shown in Figure 2.

Figure 2: Tri‐State Buffer Circuit

Using the tri-state buffers with a select line will ensure that the input and output pins of the

FPGA are not shorted together.

The XC3S100E offers 240 CLBs with 100K system gates. This amount of gates will

easily allow an output data buffer to be implemented onboard the FPGA if necessary. The use of

a buffer on the FPGA will not only save board space, but also lower the total cost of the unit.

 To help with meeting the USB 2.0 protocol, an external board will also be used. The

BASYS System Board by Digilent provides an interface between a Spartan-3 FPGA and a USB

2.0 port. This board is designed to support the Xilinx XC3S100E-4TQ144C, the FPGA chosen

for reasons stated above. The board provides a physical USB interface for the FPGA, reducing

the amount of work that needs to be done by the team. The board also provides a large number

of pre-wired external inputs and outputs (switches, buttons, and LEDs). As a result, the number

of free I/O pins is limited to sixteen. However, the current design goal is to have eight

configurable I/O pins, requiring a total of 24 I/O pins from the FPGA. To meet this requirement,

the team plans to de-solder some of the existing hardware, such as the switches, to make up the

5
© 2009 – Team Butterworth

eight pin difference between the available and required pins. Should this prove to be impossible,

the team will make some of the pins dedicated input or output, much like the original design

requirement. A dedicated input or output pin only requires one pin from the FPGA. User

control can be maximized by having two dedicated inputs (one pin each), two dedicated outputs

(one pin each), and four configurable input/output pins (three pins each). This design would use

all sixteen of the available pins from the board. However, this configuration will only be used as

a last resort if modifications to the board fail, and the plan is for all eight pins to be configurable.

The BASYS Board provides not only the physical wiring for the USB interface, but code

for both the FPGA and host computer, which will greatly reduce design and development time.

The board simulates an 8-bit parallel connection between the DSMU and host computer, so the

state machines on the FPGA will be designed to match this. The provided code is structured for

eight data registers and one address register, which are read from or written to according to three

signals from the host: WRITE (whether to read or write data), ASTB (address strobe), and DSTB

(data strobe). A more in-depth description of the Digilent Parallel Interface Module specification

can be found on the Digilent web site, at www.digilentinc.com.

Of the eight data registers in the parallel interface, only three are necessary for

communication between the host and DSMU. One will be used for FPGA input, and is reserved

for reprogramming information sent by the host computer. One will be used for FPGA output,

and is reserved for sending the current value of all eight external pins to the host computer.

Finally, one register will serve as a status register to let the host computer know when new data

is ready to be sent. A status bit letting the DSMU know when the host computer has read the

data is not necessary, because the data strobe will remain low until the data is read.

http://www.digilentinc.com/�

6
© 2009 – Team Butterworth

In order to monitor the USB connection without interrupting data collection, the VHDL

for the FPGA will include a USB controller state machine running concurrently with all other

processes. The main USB controller machine will monitor the address and data strobes, and will

control the flow of data between the parallel interface and the FPGA’s eight internal registers as

dictated. The USB controller machine will also update some internal status registers keeping

track of when output data has been read, and when new input data is available. The machine will

also clear the new data status bit for the host controller when data has been read. The VHDL

code for implementing the USB controller machine is included with the purchase of the BASYS

board.

The data flow to and from the three USB registers will be controlled by two different

state machines: a USB input state machine and a USB output state machine.

The USB input state machine will be in a wait state during normal operation. When the

USB controller indicated that new information has been received from the host computer, the

USB input machine will update internal status registers to inform the other machines that the

DSMU is in reprogramming mode. The USB input machine will then collect each byte of data

as it is read in, interpret the information, and update the status for each pin. When the machine

recognizes the end of the transmission from the host, the USB input machine will change internal

status back to normal mode, and return to a waiting state. A state diagram for the machine can

be found in Figure 3.

7
© 2009 – Team Butterworth

Figure 3: State Diagram for USB Input Machine

The USB output state machine will manage sending data to the host computer, as well as

managing the USB status register. The input/output state machines will be using a data

collection strobe, based on the oscillator of the BASYS board, to read input values at a uniform

frequency. The USB output machine will also use this strobe to determine whether or not there

is new data from the external pins. Then, it will check whether the last set of values has been

read by the host computer. If so, it will put the new values into the output register and set the

new data status bit for the host computer. If not, the machine will add the values to a larger

buffer for data to be sent, and continue with collection. If the most data in the output buffer is

read while the machine is waiting for the next set of data and there is another byte waiting in the

buffer, the USB input machine will move the next value into the output register. A state diagram

for the USB output machine can be found in Figure 4.

8
© 2009 – Team Butterworth

Figure 4: State Diagram for USB Output Machine

Given the difference in speed of data collected by the USMU and the speed of the processor on

the host computer, it is not expected to ever reach a buffer overflow. However, should this occur

during testing, the USB output machine will set a buffer overflow status bit in the status register

for the host computer.

 Finally, the status of each of the eight configurable pins will be controlled by a separate

but identical generic pin state machine. The generic pin state machine will keep track of whether

the pin is an input or output pin, as well as include a waiting state during reprogramming, to

ensure that the outputting of data is synchronous. If the pin is in the input state, the state

machine will check if the DSMU is in reprogramming mode. If the DSMU is in reprogramming

mode, it will transition to the waiting state. Else, the state machine will copy the value supplied

by the Device Under Test, at a rate specified by the data collection strobe. If the pin is in the

output state, the state machine will first set a counter. This counter tracks the time until the next

9
© 2009 – Team Butterworth

value should be written, for waveforms at less than the maximum frequency. The data collection

strobe will be used as the maximum frequency. The machine will then enter a waiting state in

which the counter is decremented, as well as check whether the DSMU has entered

reprogramming mode. If the device is in reprogramming mode, the state machine will enter the

reprogramming/wait state. Else, when the counter expires, the new value will be written both to

the external pin and the internal value register (for the USB output machine), and the counter

will be reset. The state diagram for the generic pin state machine can be found in Figure 5.

Figure 5: State Diagram for Generic Pin State Machine

2.1.2. Protocol
 All of the data that is transmitted between the host and the FPGA will use a custom

protocol. The protocol will be based on five major functions. Four of them involve the transfer

of data from the host to the FPGA, and will serve to completely reconfigure the device. The last

10
© 2009 – Team Butterworth

deals with the transfer of I/O status data back to the host. Below is a list of the five protocol

functions.

Configuration Functions

1. Transmission of a signal from the host to the FPGA indicating a change in the status of

the ports. This function will prepare the FPGA to receive new data.

2. Transmission of a signal from the host to the FPGA to specify each port as input or

output, as well as transmit the intended output frequency for each port. This data is will

then be stored on the FPGA.

3. Transmission of a signal from the host to the FPGA representing the waveform to be

placed on each output port. The waveforms will be represented by a series of bits,

whether the waveform is a complex waveform a PWM signal. Before the actual signals,

a header containing the port number and signal length will be passed in order to aid with

processing the sequence.

4. Transmission of a signal from the host to the FPGA to signal the synchronized

transmission of the output signals.

I/O Status Functions

5. Transmission of a signal from the FPGA to the host containing the logic status of all eight

ports in a one-byte packet. These packets will be sent continuously until the user decides

to reconfigure the ports.

A figure showing the headers and data sent with each function transmission is shown in

Table 1.

Function Header Packet

1 1001 (Prepares FPGA for new configuration)

2 1010 8-bits of inputs/outputs 8 x 4-bit frequencies

3 1011 1-byte sequence length Sequence

4 1100 (starts outputs together)

11
© 2009 – Team Butterworth

5 Logic status of all ports in 1 byte
Table 1: Protocol Functions

2.1.3. Software
In order to handle the information being sent between the host and the FPGA, host

software must be written. The team will utilize the Qt 4.4 open-source GUI development

framework to create multi-threaded real-time software to interface with the FPGA. This

framework will allow for the development of GUIs using C++ as the development language. The

Qt designer software has been used to create a mock up of the graphical interface. The interface

will allow users to configure I/O ports and view their status in real-time. An image of the

interface to configure a port is shown in Figure 6.

Figure 6: Configuration GUI

 It is proposed that this interface will support graphical waveform configuration

approaches found in commercial software such as Xilinx, where the user may toggle the

waveform by clicking on its image. The GUI will provide “tab” functionality, which will allow

the developers to separate an I/O status tab from this port configuration tab. The I/O status tab is

shown on the following page in Figure 7. It will allow for graphical representations of the input

and output data to be displayed on the screen in a readable manner and color will indicate if a

port is input or output. Additionally, this window will allow the user to configure a specific port

as a trigger port, to allow the user to capture and view data at a critical time of operation. Both

12
© 2009 – Team Butterworth

the configurations and I/O status will be able to be restored and saved via a configuration or

status file.

Figure 7: I/O Status GUI

Behind these graphical interfaces, a GUI Update Thread will run to periodically update

the images on the screen. This will allow the user can to get the feedback he or she wants in

near-real time, without bogging down the host by graphing after every status update is received.

In addition to this GUI Update Thread, a variety of threads will be run in order to coordinate

status and configuration transfers to and from the FPGA. Figure 8 shows the interaction between

these threads.

13
© 2009 – Team Butterworth

Figure 8: Thread Interaction

Aside from the GUI Update Thread there are six main classes to support the operation of

the DSMU software. The port class, shown in the upper right, represents of a single port of the

DSMU. It contains all necessary configuration information including direction, frequency, and

waveform. It also contains a BoolData object, which stores the I/O status over time. The

BoolData class will generally be used to store real-time Boolean data for a specific duration. It

will allow stored data to come from a trigger, or to be non-triggered. As shown, this BoolData

ultimately will be used by the GUI Update Thread in order to update the I/O status graph. All

other objects shown on the diagram are Thread objects to support the USB 2.0 interface.

The USBInput thread class will constantly retrieve I/O status data from the FPGA. This

will be accomplished through the use of the Digilent Port Communications API. This API allows

the user to read from and write to a predetermined set of registers on the Spartan-3 FPGA. As

specified in the Hardware Approach section of this document, communication from the FPGA to

the Host will utilize a status and a data register. Thus, this USB Input thread, will repeatedly read

USBInput

Array of Port

BoolData

InputHandler USBOutput GUIUpdate

Queue Input Data U
pd

at
e
G
U
I D

ow
nload to

D
evice

GUI

Frequency

Direction

U
pd

at
e
Bo

ol
D
at
a

14
© 2009 – Team Butterworth

the FPGA status. If there is data in its output buffer, it will read that data until the buffer is

empty. Otherwise it will sleep for a short amount of time to be determined through

experimentation. This approach will allow the host to refrain from busy polling, while not

missing data through the use of the FPGA buffer. To ensure that no data is lost, the USB Input

Data class will not parse any information, rather it will pass it off to an Input Handler class to

perform any necessary processing.

The USB Input Handler class will act as the consumer for the USB Input Thread. At the

current time, it is proposed that this thread will simply use the I/O status bytes provided to update

the global port representation as shown in the diagram. The structure of this producer consumer

relationship between the USBInput and Input Handler threads leaves the opportunity for more

complicated FPGA to Host data streams to be used.

The USBOutput Thread will send information to the FPGA at the user’s request, as

specified by the GUI interaction. This thread will function to download new configuration

requests to the FPGA following the protocol defined above in the Protocol Approach section.

The Digilent Port Communications API will once again be used to interface to the FPGA. As

defined in the hardware section, a single byte length register will be used to store any Host to

FPGA data. Thus, this thread will break down configuration packets into single bytes, repeatedly

using the data transfer API calls to configure the device.

More detailed specifications for all of the classes, including all public and private

member and functions, as well as their functionality can be found in Appendix A.

15
© 2009 – Team Butterworth

2.2. Result

 Team Butterworth proposes the aforementioned design strategies because they provide

distinct advantages in upgrading the DSMU.

 With respect to hardware, the Spartan-3 FPGA will operate at much higher clock speeds

than the original PIC design. Because of this, the FPGA will be capable of 5 MHz frequencies

for all 8 channels. The use of a USB 2.0 interface will also ensure that the FPGA can download

new waveforms while in operation with minimal delay. The original design required 3 output

channels, 3 input channels, and 2 programmable channels. With the FPGA approach, the team

should be able to implement 8 programmable channels. This feature reduces the limitations of

the DSMU.

 The speed of the FPGA would not help meet data frequency specifications if the data

processing took many clock cycles. Therefore, most of the data processing, such as triggers, will

take place on the host PC. This will reduce the number of clock cycles the FPGA requires to

handle the status of each I/O port. The host software will also allow the user to view and

configure data with a GUI that is easy to use. The data will be displayed on the host machine in

clear manner. The GUI will also offer the ability to save graphs and port configurations for the

purpose of reviewing data and the waveforms sent to the DUT. The user will also be able to

open previously saved port configurations, which will allow him or her to run the same tests

multiple times without having to remember the port configurations. A print functionality for the

graphs will also be included.

 The classes being implemented by the team will run as separate threads so that the GUI

will remain responsive to the user’s inputs. The user will then be able to configure ports, save

16
© 2009 – Team Butterworth

data, and print graphs while the DSMU is transmitting data. The finished overall system with

these features will make a positive addition to the embedded systems laboratory at Ohio State.

2.3. Statement of Work

A full breakdown of each task can be found in the Timeline in Appendix B. This section

will provide a broad overview of the main tasks identified by the group. The following tasks will

be performed to realize the physical DSMU device:

Task 1: The BASYS development board will be ordered along with the appropriate

connectors to interface I/O. Basic tests will be performed using the BASYS’s on-

board I/O.

Task 2: The Digilent USB 2.0 communication API will be tested to verify it operates as

expected.

Task 3: The USB input and output state machines will be written in VHDL and verified

on the FPGA.

Task 4: The generic pin state machine will be written in VHDL and verified on the FPGA.

Task 5: Simulations will be run with one channel set as an input and another set as an

output, with the two channels directly connected to test the devices sub-

component interfaces.

Through this process, the protocol development personnel will assist to ensure protocol

standards are followed by the host and FPGA software and firmware. The following tasks will be

performed to fulfill the protocol portion of the DSMU project:

Task 1: Test the FPGA to Host communication of I/O status

Task 2: Test the Host to FPGA communication of device configuration

17
© 2009 – Team Butterworth

 The final section of the project, the software, will utilize the protocol personnel for assistance

with the USB interface. The following tasks will be performed by software personnel to fulfill

the host portion of the DSMU project:

Task 1: Create a GUI shell with no functional parts in order to map out what functions

will be needed. (Already completed)

Task 2: Implement a generic port class to hold all port data.

Task 3: Develop software for real-time graphing of Boolean data.

Task 4: Develop code to support USB communication through separate USB output and

USB input threads.

Task 5: Test the host software.

3. Resources

3.1. Personnel

 Team Butterworth will design and build the DSMU as well as write the host software.

Additionally, previous team members and instructions staff will be consulted to ensure the best

possible design for the DSMU. Based on the level of expertise in different fields, the members

of Team Butterworth will separate into three different teams. The software team will develop the

host software, and will consist of Pat Wensing and Robert Richards since they have the strongest

software background; the protocol team, consisting of Bill Isaacs and Steve Schairbaum will

specify the protocol for transmissions between the host and the DSMU, as well as aid in

constructing the unit physically; the hardware team will deal with programming the FPGA using

VHDL and be made up of Hannah Driscoll and John Defrain, since hardware is their specialty.

18
© 2009 – Team Butterworth

3.2. Facilities / Equipment

 The laboratories of the Electrical and Computer Engineering Department at The Ohio

State University include adequate space for this effort. Team Butterworth will also use their

personal computers in order to facilitate the design process. The specific computer equipment

required includes the following:

• Two PC Workstations

o Microsoft Windows Workstations (XP or Vista)

o QT Designer 4.4 Open Source

o G++ Compiler

o Xilinx Project Navigator (Version 10.1 or later)

o One USB 2.0 Port

4. Costs

4.1. Financial

Team Butterworth’s estimated costs for the project are expected to be below the project

budget of $100. The BASYS Spartan-3 board, with an academic discount, will cost $60.00. The

external circuitry to interface the BASYS board with the banana plugs will be constructed on

perforated circuit board to save costs, and will cost approximately $10.00 for the board,

components, wire, and solder. Additionally, the connectors for the banana plugs will cost

approximately $13.00, and the project box to house the DSMU will cost $7.00. Therefore, the

total expected project cost is $90.00. The remaining $10.00 of the $100 budget will go to

19
© 2009 – Team Butterworth

miscellaneous unforeseen costs. A visual breakdown of the construction costs can be seen in

Figure 9.

Figure 9: Breakdown of Construction Costs

Time and budget permitting, Team Butterworth may have a PCB for the external circuitry

manufactured by Express PCB, instead of using perforated circuit board, at approximately

$20.00 per board.

4.2. Timeline

A full timeline for this project can be found in Appendix B, detailing day by day

activities. The timeline is broken up into Initial Software Development, Initial FPGA

Development, Electrical/Physical Development, and Complete System Testing and Refinement.

Table 2 details week by week activities. Primary development efforts will focus on the

development of the physical interconnections to the BASYS development board, and the USB

interface between the host and FPGA. Concurrent efforts will implement the host software and

FPGA firmware for this communication. The easier task, providing data from the FPGA to the

BASYS Spartan‐
3 Board
60%

External PCB
10%

Connectors
13%

Project Box
7%

Miscellaneous
10%

20
© 2009 – Team Butterworth

host, will initially be faced due to the simplicity of the protocol for transfers in this direction.

This milestone should be reached by April 10th. During the following week, transfers of data

from the host to the FPGA, including all device configuration transmission protocols, will be

implemented and tested. Thus, through these goals, the USB interface should be functional by

the third week of the quarter, ending on April 17th.

After completing this core functionality, the host and FPGA development personnel will

take one week to focus on development that indirectly utilizes the USB interconnection. For the

host software, this will entail development of graphing capabilities. For the FPGA, this will

entail implementing state machines for the sampling and output of I/O data. By focusing on the

USB implementation first, the team will be able to focus on the most difficult problem by itself,

prior to adding any additional complexity to the system. Additionally, since the USB

functionality is most likely to face design modifications, developing a stable set of core

functionality early in the project will benefit the other areas that rely on a stable interface.

Week Task
1 USB Input Software, Hardware Familiarity, Physical Wiring
2 USB FPGA to Host Testing/Development, Physical Construction
3 USB Host to FPGA Development/Testing
4 FPGA I/O Handling Testing/Development, Host Graphing
5 Host System Integration Testing, FPGA System Integration Testing
6 Host System Integration Testing, FPGA System Integration Testing
7 Complete System Testing and Refinement
8 Complete System Testing and Refinement, Final Documentation
9 Complete System Testing and Refinement, Final Documentation

10 Final Documentation
Table 2: Weekly Task Breakdown

21
© 2009 – Team Butterworth

5. Conclusion

5.1. Summary

 In this document Team Butterworth has proposed a redesign of the Digital Stimulus

Monitor Unit. This redesign is based up a Spartan-3 FPGA as part of a BASYS evaluation board

which communicates with a Windows host over a USB 2.0 interface. Background on the

previous DSMU, as well as motivation for producing a working unit, were provided at the start

of this document. A discussion of the approach was provided, detailing the specific design

decisions that will motivate implementation. A time and budget breakdown has proposed a

solution that is capable of being produced both on time and under budget.

 In summary, the proposed DSMU redesign will provide an affordable solution to the

testing and debugging of high speed digital circuits. Through the integration of an FPGA, the

solution aims to make dramatic frequency specification improvements over a previous PIC

microcontroller based solution. The use of the Qt development framework for the host, coupled

with the Digilent USB 2.0 communications API will allow design to be focused on higher level

tasks, accelerating the overall development time for this project. Through these development

decisions, a working prototype will be created over the course of a ten week build cycle that

meets all desired specifications.

6. Contact

 For more information regarding this proposal please contact Team Butterworth through

its team leader, Robert Richards, at richards.838@osu.edu.

mailto:Richards.838@osu.edu�

22
© 2009 – Team Butterworth

7. Bibliography

Basys System Board. Digilent, Inc. 01 Mar. 2009

<http://www.digilentinc.com/Products/Detail.cfm?Prod=BASYS>.

Digilent Parallel Interface Module Reference Manual. 10 Aug. 2004. Digilent, Inc. 01 Mar. 2009

<http://digilentinc.com/Data/Products/ADEPT/DpimRef%20programmers%20manual.pdf>.

DIGITAL STIMULUS MONITOR UNIT. June 2208. The Ohio State University. 01 Mar. 2009

<http://www.ece.osu.edu/~degroat/ECE582/DigPulseRespMonINFO/Documentation/DSMU%20FINAL%

20DOC.docx>.

DPCUTIL Programmer's Reference Manual. 3 June 2005. Digilent, Inc. 01 Mar. 2009

<http://www.digilentinc.com/Data/Products/ADEPT/DPCUTIL%20Programmers%20%20Reference%20

Manual.pdf>.

Extended Spartan-3A FPGA Family Overview. 31 July 2008. Xilinx, Inc. 01 Mar. 2009

<http://www.xilinx.com/support/documentation/data_sheets/ds706.pdf>.

Qt - a cross-platform application and UI development framework. Nokia Corporation. 01 Mar. 2009

<http://www.qtsoftware.com/products/appdev/platform/qt-for-windows>.

© 2009 – Team Butterworth

Appendix A: Host Software Source
Code and Documentation

A1
© 2009 – Team Butterworth

/**
 \brief Class for storing real time Boolean data for a specific duration
 The BoolData class is used for storing data over a given time period.
 The class supports storing both triggered and non-triggered data. For non-triggered data, each
time that a (bool,time) pair is added, all old (bool,time) pairs outside of the given time period
are removed from the data set. For triggered data, only data before the trigger time can expire,
and data occurring after duration + trigger time is not added to the structure.

*/
class BoolData : public QwtData
{
 public:
 /*!\specDetails
 \brief Constructor for BoolData Class
 \ensures
 The new data object with have a maxTime of 1 second, triggers disabled, a trigger

 time of 0 seconds, and no bool/time values.
 **/
 BoolData();

 /*!\specDetails
 \brief Returns the number of (bool,time) pairs in the data set
 \ensures The size of the data set will be returned
 **/
 size_t size() const;

 /*!\specDetails
 \brief Returns the i-th time value associated with the data set
 \return The i-th time value associated with the data set
 \param[in] i the time value to return. i=0 is the oldest time value
 \requires 0 <= i < the size of the data set
 **/
 virtual double x(size_t i) const;

 /*!\specDetails
 \brief Returns the i-th bool value associated with the data set
 \return The i-th bool value associated with the data set (0 for false, 1 for true)
 \param[in] i the bool value to return. i=0 is the oldest bool value
 \requires 0 <= i < the size of the data set
 **/
 virtual double y(size_t i) const;

 /*!\specDetails
 \brief Creates a copy of the distinguished parameter
 \return A pointer to the copy
 **/
 virtual QwtData * copy() const;

 /*!\specDetails
 \brief Sets the duration to save old Boolean data before removing it from the Boolean

 data vectors
 \param[in] m the duration to save old data (in seconds)
 \ensures maxTime = m
 **/
 void setMaxTime(double m);

 /*!\specDetails
 \brief Adds a time/bool pair to the data set
 \param[in] x the time value for the time/bool pair
 \param[in] y the bool value for the time/bool pair
 \requires x > the time value of the most recently added pair (i.e data is added with

 increasing time values)
 \ensures For non-triggered, the (x,y) pair will be added to the data set, and all
 expired data will be removed.

For triggered, the data will only be added if the time value is less than
trigger time + maxTime.

 **/
 void addData(bool x,double y);

 /*!\specDetails
 \brief Sets the trigger time for the data set

A2
© 2009 – Team Butterworth

 \param[in] t the time at which the trigger occured
 \requires t >=0
 \ensures triggerTime = t
 **/
 void setTriggerTime(double t);

 /*!\specDetails
 \brief Enables the trigger for the data set
 \ensures triggerActive=true
 **/
 void enableTrigger();

 /*!\specDetails
 \brief Disabled the trigger for the data set
 \ensures triggerActive=false
 **/
 void disableTrigger();
 private:
 deque<bool> values; ///< Vector of bool values
 deque<double> times; ///< Vector of time values
 double maxTime; ///< Maximum time between the first and last time value (i.e.

 the duration to save old data)
 double triggerTime; ///< Time of trigger, (i.e. minimum time value for data during
 trigger mode)
 bool triggerActive; ///< Boolean to store if trigger mode is active
};

/**
 \brief Thread class for parsing all data recieved by the USB interface.

The Input Handler class functions to allow the USB input class to focus
solely on keeping the USB buffer empty, while offloading all
packet parsing to this thread. This helps to ensure that no data packets
are lost during an attempt to parse them. The USBInput class
feeds Input data to this class, while a wait condition signals this
thread that new data is available. The wait conditions prevent busy waiting,
and allow this thread to sleep while there is nothing to process.
*/
class InputHandler : public QThread
{
 Q_OBJECT
 public:

 /*!\specDetails
 \brief Constructor for Input Handler Class
 \ensures
 stopped = false
 **/
 InputHandler();

 /*!\specDetails
 \brief Request for thread to halt
 \requires
 Thread is running
 \ensures
 stopped = true
 **/
 void stop();
 /*!\specDetails
 \brief Adds data to the processing queue and wakes the thread if it is sleeping
 \param[in] i pointer to the USB input data to be parsed
 \ensures InputData is added to the dataIn processing queue
 Thread will be woken up if it is sleeping with the newData condition
 **/
 void addData(InputData * i);

A3
© 2009 – Team Butterworth

 protected:

 /*!\specDetails
 \brief Thread code for the InputHandler class
 \ensures The thread will begin running, continually parsing all data in the dataIn
 queue. The thread will continue to parse data until the stopped flag has
 been set.
 **/
 void run();
 private:

 QWaitCondition newData; ///< Used to wake thread during periods of previous inactivity
 deque<InputData *> dataIn; ///< Queue of data waiting to be parsed
 volatile bool stopped; ///< Holds whether a request to stop has been issued
};

 /**
 \brief Class representing a port on the Digital Stimulus/Monitor Device

 The Port class is used for storing data about a specific port.
 Data stored in the structure includes: The type of port (Disabled, Input, Complex Output
 Waveform, Duty Cycle Output Waveform).
 The InputHandler class will modify a given Port to update its condition if it is an input
 port, and the USBOutput class will
 read the data in all Ports then deliver the information across the USB to the device

*/

 class Port
 {
 public:
 /**
 \brief Enumeration of the types of ports
 */

 enum PortType
 {
 DISABLED,
 INPUT,
 OUTPUT_WAVEFORM,
 OUTPUT_DUTY_CYCLE
 };

/*!\specDetails
 \brief Constructor for Port Class
 \ensures
 freq = 0, type = DISABLED, mutex is unlocked
 **/

 Port();

/*!\specDetails
 \brief Sets the frequency of the waveform on the port
 \param[in] f the integer denoting the new frequency of the waveform
 \requires 0<= f <= 5,000,000 (5 MHz)
 **/

 void setFreq(int f);

/*!\specDetails
 \brief Returns frequency of the waveform on the port
 \return The frequecy of the waveform on the port
 **/

 int getFreq();

/*!\specDetails
 \brief Sets the port's type
 \param[in] t the enumerated integer denoting the port's new type
 \requires 0 (DISABLED) <= t < 3 (OUTPUT_DUTY_CYCLE)

A4
© 2009 – Team Butterworth

 **/

 void setType(PortType t);

 /*!\specDetails
 \brief Returns the port's type
 \return The port's type (enumerated integer)
 **/

 PortType getType();

 BoolData outputWaveform; ///< public BoolData class containing information about the

 port's output waveform
 BoolData inputWaveform; ///< public BoolData class containing information about the
 port's input waveform

 QMutex mutex; ///< for controlling when processes can access a certain port

 private:
 int freq; ///< the frequency of the signal
 PortType type; ///< enumerated integer for the port type
 };

 /**
 \brief Class running as a thread for outputting data to the device

 The USBOutput thread will be used whenever the user wants to download new data to the Digital
 Stimulus/Monitor Unit.
 The thread will be waiting for any command to come in, then execute the proper functions
 depending on whether the command
 coming into the thread was the DOWNLOAD command or the STOP command. The thread will only be
 active when it is downloading.
 It will be inactive otherwise.

*/

 class USBOutput : public QThread
 {
 Q_OBJECT

 public:

 /*!\specDetails
 \brief Constructor for USBOutput Class
 \ensures
 commandMutex is unlocked, commands is empty, newCommand is waiting to run
 **/

 USBOutput();

 /*!\specDetails
 \brief Function that will download all ports to the device via USB
 \requires
 Thread is running
 \ensures
 newCommand = DOWNLOAD, commands[END_OF_QUEUE] = newcommand, where END_OF_QUEUE is

 the end fartherst away from the end currently being executed
 **/

 void DownloadToDevice();

 /*!\specDetails
 \brief Request for thread to halt
 \requires
 Thread is running
 \ensures
 newcommand = STOP
 **/

 void stop();

A5
© 2009 – Team Butterworth

 protected:

 /*!\specDetails
 \brief Thread code for the USBOutput class
 \ensures The thread will begin running, waiting for commands to come in to

 the commands queue. The thread will continue to run until the stopped
flag has been set.

 **/

 void run();

 private:

 /**
 \brief Enumeration of the commands to be handled by USBOutput
 */
 enum OutputCommand ///< enumerated integer representing the command requested of the
thread
 {
 DOWNLOAD,
 STOP
 };

 QMutex commandMutex; ///< Mutex for controlling when processes can access the thread
 volatile deque<OutputCommand> commands; ///< Double ended queue of enumerated integers
 representing commands requested of the
 thread
 QWaitCondition newCommand; ///< Used to wake thread during periods of previous
 inactivity
 };

 /**
 \brief Class running as a thread for reading data being input from the device

 The USBInput thread will be used to read data coming in from the Digital Stimulus/Monitor
 Unit. It will constantly be
 reading the USB connection to see if there is new data, as long as the thread has not been
 stopped

*/

 class USBInput : public QThread
 {
 Q_OBJECT

 public:

 /*!\specDetails
 \brief Constructor for USBInput Class
 \ensures
 stopped = false
 **/

 USBInput();

 /*!\specDetails
 \brief Request for thread to halt
 \requires
 Thread is running
 \ensures
 stopped = true
 **/

 void stop();

 protected:

 /*!\specDetails
 \brief Thread code for the USBInput class

A6
© 2009 – Team Butterworth

 \ensures The thread will begin running, constantly checking for inputs to come in
from the device. The thread will continue to run until the stopped flag has been
set.

 **/

 void run();

 private:
 volatile bool stopped; ///< Boolean representing whether the thread is stopped or not
 };

 /**
 \brief Class running as a thread for updating the GUI

 The GUIUpdate thread will be used to update the GUI. The thread will periodically update the
 GUI at a certain rate. There
 will be a timer for determining exactly how often the GUI is updated. This thread will run
 unless it has been stopped.

*/

 class GUIUpdate : public QThread
 {
 Q_OBJECT

 public:
 /*!\specDetails
 \brief Constructor for GUIUpdate Class
 \ensures
 stopped = false
 **/
 GuiUpdate();

 /*!\specDetails
 \brief Request for thread to halt
 \requires
 Thread is running
 \ensures
 stopped = true
 **/

 void stop();

 protected:

 /*!\specDetails
 \brief Thread code for the GUIUpdate class
 \ensures The thread will begin running, updating the GUI periodically. The thread
 will continue to run until the stopped flag has been set.
 **/
 void run();

 private slots:

 /*!\specDetails
 \brief Private slot for denoting that the timer has stopped
 \requires
 Thread is running
 \ensures
 Thread will be woken to perform a GUI Update
 **/

 void timerExpired();

 private:

 QTimer timer; ///< QTimer class repesenting how often the GUI will update
 QWaitCondition timerExpired; ///< used to wake thread during periods of previous
 inactivity
 volatile bool stopped; ///< Boolean representing whether the thread has stopped or not
 };

A7
© 2009 – Team Butterworth

© 2009 – Team Butterworth

Appendix B: Project Timeline

	List of Figures
	List of Tables
	1. Introduction
	1.1. Purpose
	1.2. Background
	1.3. Scope

	2. Discussion
	2.1. Approach
	2.1.1. Hardware
	2.1.2. Protocol
	2.1.3. Software

	2.2. Result
	2.3. Statement of Work

	3. Resources
	3.1. Personnel
	3.2. Facilities / Equipment

	4. Costs
	4.1. Financial
	4.2. Timeline

	5. Conclusion
	5.1. Summary

	6. Contact
	7. Bibliography
	Appendix A: Host Software Source Code and Documentation
	Appendix B: Project Timeline

